AR Scorpii, a low-mass binary with the first known radio pulsar white dwarf

Benito Marcote

Joint Institute for VLBI ERIC (JIVE)

Variable Galactic Gamma-Ray Sources — 5 July 2017

Introducing AR Scorpii

A long time ago...

- 14.5–16.5 mag
- 116 pc away
- δ-Scutti star (Satyvaldiev 1971):
 - Pulsations of the star's surface
 - Used as standard candles

Introducing AR Scorpii

AR Sco, a M star + white dwarf binary

- But there is a problem...
 - ... it is not a δ -Scutti star!
- Light-curve with large scatter
- Binary system
- $P_{\rm orb} = 3.56 \ {\rm h}$
- M star $\approx 0.3~M_{\odot}$ White Dwarf $\approx 1~M_{\odot}$
- Emission from radio to X-rays

 $\phi = 0.5 \Longrightarrow$ inferior conjunction

Marsh et al. (2016, Nature, 537, 374)

Origin of the spectral line emission

• $H\alpha, \beta, \gamma$ lines

Spectral Energy Distribution

AR Sco: light-curves

Marsh et al. (2016)

AR Sco: the first pulsar white dwarf

- Orbital period of 3.56 h
- Pulses observed every 1.97 min
- Spin period: 1.95 min
- AR Sco is the first "so-called" radio pulsar white dwarf
- Spin-down: $P\dot{P}^{-1}\sim 10^7~{
 m yr}$ WD cooling time: $\sim 10^9~{
 m yr}$

Spin-up / spin-down cycles?

(Marsh et al. 2016)

A piece of context

- All known binary WD (\sim 120) but one exhibit flux densities < 1 mJy Barrett et al. (2017)
- Jet outflows are known in some accreting white dwarfs Körding et al. (2008, 2011)
- AE Aqr is the exception:
 - Can exceed 10 mJy
 - Rapidly spinning magnetic white dwarf
 - magnetic propeller Wynn et al. (1997), Meintjes et al. (2012)
 - GeV? evidences but no significant (Li et al. 2016)
 - TeV bursts? Meintjes et al. (1994), Bowden et al. (1992), Bowden et al. (1992) and Chadwick et al. (1995) but see (Aleksić et al. (2014)

AR Sco

- Is also bright (\sim 10 mJy)
- No accretion. Propeller system?

Most of the emission is likely originated in the M star's magnetosphere facing the white dwarf (Marsh et al. 2016, Katz 2017)

How the energy is transferred from the white dwarf to the M star?

Two main possibilities: (Marsh et al. 2016, Buckley et al. 2017, Katz 2017)

- Collimated relativistic particle outflows
- Direct interaction between the WD magnetosphere and the M star

VLBI radio observations with the Australian LBA

Natural weighting (no self-cal.) — vs — zero robust after self-cal. Contours start at 3σ rms noise level of 0.4 mJy.

 $\label{eq:compact} \begin{array}{l} \mbox{Compact emission} \ (< 0.17 \ \mbox{mas} = 0.02 \ \mbox{AU} = 4 \ \mbox{R}_{\odot}) \\ \mbox{Marcote et al.} \ (2017, \ \mbox{A\&A}, \ \mbox{601}, \ \mbox{L7}) \end{array}$

VLBI radio observations with the Australian LBA

AR Scorpii: a summary

- Luminosity 4-14 times larger than the stellar luminosity combined
- No accretion signatures
- *All* emission is compact (< 0.17 mas = 0.02 AU = 4 $m R_{\odot}$)
- Non-thermal radio emission (5 \times 10 $^9 \lesssim$ $T_b \lesssim$ 10 12 K)
- Optical emission (Buckley et al. 2017, Nat. Astron, 1, 29):
 - linear polarization up to 40%
 - Circular polarization $\lesssim 5\%$
 - Pulsed emission powered by the spin-down of the WD
 - Highly magnetized $\sim 500~\text{MG}$
- Emission likely to come from the surface of the M star hit by the WD collimated outflow
- Likely to evolve towards a Polar system

AR Scorpii: a summary

Geng et al. (2017, ApJ, 831, L10)

GeV emission from AR Sco?

- In this system, the light-cylinder is $\sim 6\times 10^{11}$ cm (~ 7.5 times orbital separation)
- At that distance $B\sim 0.4~{\rm G}$
- $\gamma_e \approx 10^6$ (Buckley et al. 2017)
- No detailed analysis of Fermi/LAT data yet
- Flare activity could be expected
- Hints of modulated emission in previous releases?
 But no significant enough

- AR Sco is the first system of its kind
- $\bullet\,$ Contains a pulsing white dwarf with a period of 1.95 min
- Orbiting a low-mass M star
- Emission from the surface of the M star hit by the WD outflow
- New possible γ -ray emitting binary
- Precursors of polar systems?

Thank you!

Optical & ultraviolet spectra

Marsh et al. (2016)

Optical polarization

Buckley et al. (2017)