

Introduction

Fast Radio Bursts

Possible origins

Searching for counterparts

Localizing FRB 121102

The VLA localization

The emission on milliarcsecond scales

The optical counterpart

Possible origins for FRB 121102

Gamma-ray emission?

Conclusions

Introduction

Introduction: What is a Fast Radio Burst?

- Fast and strong radio flashes
- Duration of a few milliseconds
- ullet Detected at radio freq. (~ 1 GHz)
- ullet Bright: \sim 0.1–1 Jy
- Discovered by Lorimer et al. (2007)
- Origin: completely unknown
- All possibilities are still open during these 10 yr

Lorimer et al. (2007)

The known Fast Radio Bursts

Event	Telescope	gl [deg]	gb [deg]
FRB010125	parkes	356.641	-20.020
FRB010621	parkes	25.433	-4.003
FRB010724	parkes	300.653	-41.805
FRB090625	parkes	226.443	-60.030
FRB110220	parkes	50.828	-54.766
FRB110523	GBT	56.119	-37.819
FRB110626	parkes	355.861	-41.752
FRB110703	parkes	80.997	-59.019
FRB120127	parkes	49.287	-66.203
FRB121002	parkes	308.219	-26.264
FRB121102	arecibo	174.950	-0.225
FRB130626	parkes	7.450	27.420
FRB130628	parkes	225.955	30.655
FRB130729	parkes	324.787	54.744
FRB131104	parkes	260.549	-21.925
FRB140514	parkes	50.841	-54.611
FRB150418	parkes	232.665	-3.234
FRB150807	parkes	336.709	-54.400
FRB160317	UTMOST	246.050	-0.990
FRB160410	UTMOST	220.360	27.190
FRB160608	UTMOST	254.110	-9.539

Petroff et al. (2016)

- 21 FRBs have been reported to date Petroff et al. (2016)
- Plus 3 detected in 2016/17
- No correlation with the Galactic Plane
- Almost all of them detected by Parkes
- 1 by Green Bank & 1 byArecibo
- UTMOST in the last year
- ullet Rate: $\sim 10^{3-4}~{
 m day}^{-1}~{
 m sky}^{-1}$

The Dispersion Measure

Light is dispersed by the material in the medium.

Dispersion Measure:

$$\mathrm{DM} = \int n_{e} \mathrm{d}I$$

All FRBs show unexpected large DMs.

Larger than the contribution of our Galaxy

Estimated $z \sim 0.16-1.3$

Lorimer et al. (2007)

The Dispersion Measure

Light is dispersed by the material in the medium.

Dispersion Measure:

$$\mathrm{DM} = \int n_e \mathrm{d}I$$

All FRBs show unexpected large DMs.

Larger than the contribution of our Galaxy

Estimated $z \sim 0.16-1.3$

Lorimer et al. (2007)

What can FRBs be?

Credit: J. P. Macquart

Evaporating Black Holes

Super-giant **Pulses**

extra-Galactic

The

Gamma-ray **Bursts**

Implied rate of 1000s per day, per sky... but what are they?

Micro-quasars

Flare stars

Galactic

Pernicious RFI **Atmospheric effects**

Magnetars

We are here

Pulsars

The repeating FRB 121102

- The only one observed by Arecibo (305-m diameter)
- The only one detected more than once:
 Spitler et al. (2014, 2016),
 Scholz et al. (2016)
- In the Galactic anticenter
- One of the closest ones?
 (×3 Galactic contribution)
- Two types of FRBs?

The repeating FRB 121102

No periodicities are observed at all.

Other possible repeaters?

FRB 110220 and FRB 140514 were detected within 9 arcmin and 3-yr apart.

- FRB 110220. DM = 944.4 pc cm^{-3} (Thornton et al. 2013)
- FRB 140514. DM = 562.7 pc cm^{-3} (Petroff et al. 2015)

Probability of chance coincidence: 1–32%

Possible explanations: DM dominated by SNR (young and expanding) (Piro & Burke-Spolaor 2017)

FRB 131104 also observed at X-rays ("gamma")?

Swift detected a 100-s transient coincident with FRB 131104 (DeLaunay et al. 2016)

- 15-200 keV
- $E \sim 5 \times 10^{51} \text{ erg}$

However,

- 3- σ detection
- Change coincidence subestimated (Shannon & Ravi 2017)
- Would point out to a much different (and close) distance (Gal & Zhang 2017)

Next step: find counterparts (higher resolution)

How can we better localize Fast Radio Bursts?

Direct detection.

The only unambiguous approach.

High resolution ⇒ limited field of view

Requires imaging on ms scales

Extremely challenging (technically and operationally)

Looking for afterglows.

When a FRB occurs, look at the field with higher resolution telescopes.

If they are cataclysmic \Longrightarrow should be an afterglow Can produce spurious identifications

as in Keane's localization of FRB 150418

Localizing FRB 121102

The First Precise Localization of a Fast Radio Burst

The last crusade: the localization of FRB 121102

Karl G. Very Large Array (VLA)

- 27 25-m dishes
- \bullet \sim 100 km apart
- From Nov 2015 to Sep 2016
- 83 h at 1.6 and 3 GHz
- One burst on 23 Aug 2016
- 8 more in Sep 2016

European VLBI Network (EVN)

- 6–10 stations (Europe, Asia, Africa)
- $\bullet~\sim \! 10\,000$ km apart
- From Feb to Sep 2016
- 8 epochs at 1.6 and 5.0 GHz
- 4 bursts on 20 Sep 2016

Real-time correlation + raw data buffering to search for pulses (techniques developed just during the last years)

The VLA localization of FRB 121102

5-ms image (dispersion corrected) of one burst.

Chatterjee et al. (2017, Nature, 541, 58)

The VLA localization of FRB 121102

- Persistent radio counterpart
- \bullet Co-located within $\sim 0.1~\mathrm{arcsec}$
- $\langle S_{3~\mathrm{GHz}} \rangle \sim 180~\mu\mathrm{Jy}$
- $\bullet \ \ \text{Variability} \sim 10\%$
- Variability uncorrelated with the bursts

Chatterjee et al. (2017, Nature, 541, 58)

The EVN localization of FRB 121102

Marcote et al. (2017, ApJL, 834, 8)

The optical counterpart

- Archival Keck data from 2014
- Gemini observation (Oct 2016)
- Extended 25-mag counterpart
- $z = 0.19273(8) \Longrightarrow 972 \text{ Mpc}$ Extragalactic!
- Emission lines
 ⇒ low-metallicity star-formation
- Dwarf galaxy!

Diameter: \lesssim 4 kpc Mass: 4–7×10⁷ ${\rm M}_{\odot}$

Star Formation: $\sim 0.4~\rm M_{\odot}~\rm yr^{-1}$

Tendulkar et al. (2017, ApJL, 834, 7)

Preliminary HST data! (Bassa et al. in prep)

The VLA localization of FRB 121102

SED of FRB 121102 (Chatterjee et al. 2017, Nature, 541, 58)

Understanding the radio bursts (PRELIMINARY)

- The bursts seem to be localized in freq.
- Width of hundreds of MHz

- Rate vs E: power-law
- Different normalization depending on the "epoch"

Law et al. (in prep)

No X-ray bursts (PRELIMINARY)

Simultaneous radio and X-ray observations (with XMM and Chandra)

- Nine bursts observed
- • No X-ray photons at those times $(< 4 \times 10^{-11} \ \text{erg cm}^{-2})$
- No X-ray bursts at all $(< 5 \times 10^{-10} \text{ erg cm}^{-2})$
- Persistent emission? $L_{0.5-6 \rm keV} < 3 \times 10^{41} \ \rm erg \ s^{-1}$

Scholz et al. (almost submitted)

Possible origins for FRB 121102

- What it is not:
 - A standard pulsar / RRAT / flare star / . . .
 - Supernova remnant, as Cas A (at least 4 orders of magnitude fainter)
 - Compact star-forming regions, as Arp 220 (similar luminosity but would need a much larger region and SFR)
 - IMBH, X-ray binary, ultraluminous X-ray nebula, ...

Possible origins for FRB 121102

- What it is not:
 - A standard pulsar / RRAT / flare star / ...
 - Supernova remnant, as Cas A (at least 4 orders of magnitude fainter)
 - Compact star-forming regions, as Arp 220 (similar luminosity but would need a much larger region and SFR)
 - IMBH, X-ray binary, ultraluminous X-ray nebula, ...
- What it could be:
 - Young superluminous supernovae powered by the spin-down power of a neutron star or magnetar (e.g. Murase et al., Piro et al. 2016)
 - Bursts produced by a strong plasma turbulence excited by the jet of a massive black hole (Romero et al. 2016, Vieyro et al. in press)
 - Neutron star interacting with the jet of a massive black hole
 (Pen & Connor 2015, Cordes & Wasserman 2016, Zhang 2017)
 - Synchrotron maser activity from an AGN? (Ghisellini 2017)
 - Possibly new suggestions coming!

Is gamma-ray emission expected?

- Pulsar + SLSNe: γ -ray flashes expected for < 100 Mpc (Murase et al. 2016)
- AGN/jet-related: could produce γ-ray emission on second-minute timescales (on-going work) (Vieyro et al. A&A in press)
- Possible emission if FRBs are GRB-like and nearby (Murase et al. 2017)
- γ -ray FRBs followed by radio afterglows in the magnetar scenario or mergers (Murase et al. 2017)

Conclusions

- Origin of FRBs still widely discussed
- FRB 121102 is extragalactic
- We do not see afterglows in FRB 121102
- Is FRB 121102 representative?
 Are FRBs located in dwarf galaxies?
- Localization of more FRBs is still needed
- Coming soon: many observations from radio to TeV...
 - Detection with MAGIC soon (either optical or TeV)? :-)

Thank you!

FRB 150418: The first announced association

Keane et al. (2016, Nature, 530, 453)

Parkes detection ATCA follow-up 2-hr later.

Association with a transient source Early-type galaxy at $z\sim 0.5$

... or just an unassociated AGN?

Williams & Berger (2016) Vedanthan et al. (2016) Giroletti et al. (2016) Bassa et al. (2016)

Optical spectrum

Tendulkar et al. (2017, ApJL, 834, 7)

Localizing FRB 121102 on milliarcsecond scales

Marcote et al. (2017, ApJL, 834, 8)

Localizing FRB 121102 on milliarcsecond scales

Dirty and clean image from FRB 121102.

Astrometry limited by signal-to-noise ratio

Positions derived from 406 pulses from the pulsar B0525+21

Marcote et al. (2017, ApJL, 834, 8)

FRB 121102, optical emission

Emission lines dominated by Star Formation

No emission detected at:

- sub-mm (ALMA) rms of 17 $\mu \mathrm{Jy}$
- X-rays (*Chandra, XMM*) $< 5 \times 10^{41} \mathrm{~erg~s^{-1}} \ (5\sigma)$
- γ -rays (Fermi/LAT)