Multiwavelength emission of the gamma-ray binary LS I +61 303

Benito Marcote Joint Institute for VLBI ERIC (JIVE, The Netherlands)

14 June 2017 Multifrequency Behavior of High Energy Cosmic Sources

High-energy binary systems

High-Energy (above 1 GeV) sky from Fermi/LAT

Binary systems:

High-Mass X-ray binaries, Colliding Wind Binaries, Gamma-Ray Binaries

High-energy binary systems

Very High-Energy (~TeV) sky from Cherenkov Telescopes High-Mass X-ray binaries, Colliding Wind Binaries, Gamma-Ray Binaries

Gamma-ray binaries

Massive star and compact object

Non-thermal SED dominated by γ -rays

Only six systems are known to date:

System	Main star	P/ days
LS 5039	06.5 V	3.9
LMC P3	O5 III	10.3
1FGL J1018.6–5856	06 V	16.6
LS I +61 303	B0 Ve	26.5
HESS J0632+057	B0 Vpe	315.0
PSR B1259-63	09.5 Ve	1236.7

Only in PSR B1259–63 we know the nature of the compact object: NS

Zabalza et al. (2012)

Gamma-ray binaries

Massive star and compact object

Non-thermal SED dominated by γ -rays

Only six systems are known to date:

System	Main star	P/ days
LS 5039	06.5 V	3.9
LMC P3	O5 III	10.3
1FGL J1018.6-5856	06 V	16.6
LS I +61 303	B0 Ve	26.5
HESS J0632+057	B0 Vpe	315.0
PSR B1259-63	09.5 Ve	1236.7

Only in PSR B1259–63 we know the nature of the compact object: NS

Zabalza et al. (2012)

The Gamma-Ray Binary LS I +61 303

```
B0 Ve star (12.5 \pm 2.5 \text{ M}_{\odot})
d = 2.0 \pm 0.2 \text{ kpc}
e = 0.72 \pm 0.15
```

 $P_{
m orb} = 26.496 \pm 0.003 \ {
m d}$ $P_{
m super} = 1667 \pm 8 \ {
m d}$

Frail & Hjellming (1991), Casares et al. (2005), Gregory (2002)

Superorbital modulation

Superorbital modulation of the amplitude & phases of these outbursts with $P_{\rm so}\approx 1\,667$ d (≈ 4.4 yr)

Microquasar or non-accreting pulsar wind?

Presence of a precessing jet?

- The two observed periods can be explained as a beat frequency due to a precessing jet and the orbital motion Massi & Jaron (2013); Massi & Torricelli-Ciamponi (2016)
- Anti-correlation between X-ray luminosity and photon-index consistent with BH X-ray Binaries (Massi et al. 2017)
- Jet velocities of $\beta \sim 0.006-0.5$ (Jaron et al. 2017)

Requires the presence of a black-hole

- X-ray spectrum and spectral variability consistent with a rotation-powered pulsar (Chernyakova et al. 2006)
- Estimation of the mass of the compact object to be: $1.3 M_{\odot} < M < 2.0 M_{\odot}$, likely a Neutron Star (Zamanov et al. 2017)
- Absorption profile derived at X-rays as a function of orbital and superorbital phases. Circumstellar disk disrupted at $\Phi \approx 0.6$ and slowly regenerated (Chernyakova et al. 2017)

Optical and radio campaigns

Observations with the robotic Telescope Fabra-ROA Montsec (TFRM):

Orbital and superorbital modulation also observed in the optical band Paredes-Fortuny et al. (2015; 2017 in prep)

Optical observations

Coupling between the thermal and non-thermal superorbital variability Periodic changes in the circumstellar disk (Paredes-Fortuny et al. 2015; 2017 in prep) Similar evidences observed at TeV (Ackermann et al. 2013)

Profile of a single radio outburst

Focusing on a single outburst (Strickman et al. 1998):

Low-frequency radio emission of LS I +61 303

 GMRT and LOFAR observations contemporaneous with 15-GHz RT and OVRO ones

Marcote et al. (2016)

Both campaigns at different superorbital phase. Cannot be compared!

Low-frequency radio emission of LS I +61 303

Absorption process?

• Free-free abs: $v_{\rm FFA} = 700 \pm 200 \ {\rm km \ s^{-1}}$

• Synchrotron self-absorption: $v_{\rm SSA} = 1\,000 \pm 140 \mbox{ km s}^{-1}$

Wind velocity $1\,500\pm500$ km s^{-1}

Marcote et al. (2016)

Conclusions

- LS I +61 303 remains as a challenging gamma-ray binary
- Many clues suggest the presence of a neutron star
- The optical and non-thermal correlation suggest a common origin
- Superorbital modulation dominated by perturbations of the circumstellar disk?
- The low-frequency turnover constrains the conditions on the region
- A more detailed low-frequency radio campaign is ongoing (spectrum, variability along the orbit)

Thank you!