# Non-thermal emission from high-energy binaries through interferometric radio observations

Benito Marcote Martín

PhD Thesis

#### Advisors: Marc Ribó & Josep M. Paredes



Departament d'Astronomia i Meteorologia

October 27, 2015



Institut de Ciències del Cosmos

### **Outline of the PhD Thesis**

Introduction

The  $\gamma\text{-}\mathsf{ray}$  sky Binary systems with  $\gamma\text{-}\mathsf{ray}$  emission Motivation of this Thesis

Part I: Gamma-ray binaries

LS 5039 and its low-frequency emission (GMRT, VLA, WSRT) LS I +61 303 and its low-frequency emission (GMRT and LOFAR) HESS J0632+057, new EVN observations

Part II: Colliding wind binaries HD 93129A, a new colliding wind binary discovered

Part III: Searching for new possible gamma-ray binaries The candidate TYC 4051-1277-1 MWC 656, the first Be/BH binary system

Summary and conclusions

The gamma-ray sky



All-sky map obtained with the Large Area Telescope (LAT) detector on board the *Fermi* satellite above 1 GeV. NASA/DOE/*Fermi*/LAT Collaboration  $\sim$  3000 sources are known to emit at these energies



Benito Marcote

#### The gamma-ray sky



Very high-energy  $\gamma$ -ray all-sky map showing the 161 sources discovered up to now emitting at TeV energies. TevCat catalog (tevcat.uchicago.edu)

Benito Marcote

/59

Binary systems with  $\gamma$ -ray emission

 $\gamma\text{-ray}$  emitting sources associated to (Galactic) binary systems, usually displaying non-thermal emission from radio to  $\gamma\text{-rays}$ 

All these binaries are composed of, at least, one **massive early-type star**, with spectral types O or early B:

 $M\sim 10$  to  $\sim 150$   ${
m M}_{\odot}$ ,  $v_{\infty}\sim 10^3$  km s^{-1},  $T_{
m eff}\sim 20\,000$ –50000 K

Three different types, as a function of the companion and the nature of the emission:

- Colliding wind binaries
- High-mass X-ray binaries
- Gamma-ray binaries



#### Binary systems with $\gamma$ -ray emission

| System type                      | radio<br>emission | γ-ray<br>emission | Powering<br>source |
|----------------------------------|-------------------|-------------------|--------------------|
| Colliding wind binaries (CWBs)   | Sync              | IC                | wind collision     |
| High-mass X-ray binaries (HMXBs) | Sync              | IC                | accretion/ejection |
| Gamma-ray binaries               | Sync              | IC?               | wind collision?    |

 $\mbox{Sync:}$  synchrotron emission from radio to X-rays by a population of accelerated electrons IC: Inverse Compton scattering of stellar UV photons by the same population of electrons

...but big differences emerge from the details.

#### Colliding Wind Binaries (CWBs)

Two massive stars with powerful stellar winds Colliding winds that produce a strong shock observed at radio, X-rays and sometimes gamma-rays

Only one CWB detected at  $\gamma$ -rays:  $\eta$  **Carina**, the most massive CWB system known:

 ${\sim}90{-}120~{\rm M}_{\odot}~$  Luminous Blue Variable star  ${\sim}30~{\rm M}_{\odot}~$  O star

 $P_{
m orb}\sim 5.5$  yr  $e\sim 0.9$  Separation at periastron: 1.7 AU

(Tavani et al. 2009, Abdo et al. 2009, Reitberger et al. 2015, Damineli et al. 2008, Teodoro et al. 2012)



WR 140 and its wind collision region observed at radio frequencies (Dougherty et al. 2005)

#### High-Mass X-Ray Binaries (HMXBs)

Massive star and compact object (NS or BH) Spectral Energy Distribution (SED) dominated by thermal X-ray emission due to the presence of an accretion disk around the compact object

#### Only three HMXBs detected at $\gamma\text{-rays:}$

| System     | Main star | P/ days |
|------------|-----------|---------|
| Cygnus X-3 | WR        | 0.2     |
| Cygnus X-1 | 09.7 Ve   | 5.6     |
| MWC 656    | Be        | 60.4    |

For these systems the  $\gamma\text{-ray}$  emission only appears occasionally



Chandra X-Ray Observatory, NASA



#### High-Mass X-ray Binaries and Gamma-Ray Binaries



Some HE binaries with a compact object exhibit a different behavior:

#### High-Mass X-ray Binaries and Gamma-Ray Binaries



Some HE binaries with a compact object exhibit a different behavior:

Benito Marcote

PhD Thesis - Barcelona

#### Gamma-Ray Binaries

```
Massive star and compact object (NS or BH)
Non-thermal SED dominated by the \gamma-ray emission probably produced by the
presence of shocks between the non-relativistic stellar wind and the relativistic
wind from the compact object
```

# The whole population of gamma-ray binaries consists currently of five systems:

| System            | Main star | P/ days |
|-------------------|-----------|---------|
| LS 5039           | 06.5 V    | 3.9     |
| 1FGL J1018.6–5856 | 06 V      | 16.6    |
| LS I +61 303      | B0 Ve     | 26.5    |
| HESS J0632+057    | B0 Vpe    | 315.0   |
| PSR B1259–63      | 09.5 Ve   | 1236.7  |



Representation of PSR B1259–63 NASA



### Motivation of this Thesis

- HE binaries are good laboratories that accelerate particles up to relativistic energies, connecting particle physics to astrophysics
- $\gamma$ -ray emission produced by IC from the same electron population that generates the emission from radio to X-rays by synchrotron
- Radio observations emerge thus as a powerful tool to study in detail physical properties of the emitting regions in these HE systems
- In particular, the low frequencies remain unexplored and can provide important clues about the absorption processes and their physical parameters
- VLBI observations can resolve the radio emission and distinguish the different regions that produce the emission

The aim of this thesis is thus to improve our knowledge about the emitting regions of high-energy binary systems through radio observations

### Motivation and overview

Low and high-frequency interferometric observations



Benito Marcote

#### Motivation and overview

Very Long Baseline Interferometric (VLBI) observations







Benito Marcote

# **Outline of the PhD Thesis**

ntroduction The γ-ray sky Binary systems with γ-ray emission Motivation of this Thesis

Part I: Gamma-ray binaries

LS 5039 and its low-frequency emission (GMRT, VLA, WSRT) LS I +61 303 and its low-frequency emission (GMRT and LOFAR) HESS J0632+057, new EVN observations

Part II: Colliding wind binaries HD 93129A, a new colliding wind binary discovered

Part III: Searching for new possible gamma-ray binaries The candidate TYC 4051-1277-1 MWC 656, the first Be/BH binary system

Summary and conclusions

### **Gamma-Ray Binaries**

Young non-accreting pulsar scenario

Strong shock between both winds:

- Relativistic pair plasma wind from the pulsar
- Non-relativistic stellar wind from the massive companion star

leads to particle acceleration

Originally proposed by Maraschi & Treves (1981), re-proposed by Dubus (2006)

- Radio flux produced by synchrotron processes (Bosch-Ramon 2009)
- High energy emission produced by synchrotron (X rays) and IC (γ-rays)



# The gamma-ray binary LS 5039

#### LS 5039

```
\overline{\alpha_{\rm J2000}} = 18^{\rm h} \ 26^{\rm m} \ 15.06^{\rm s} \\ \delta_{\rm J2000} = -14^{\circ} \ 50' \ 54.3''
```

O6.5 V star (23  $\pm$  3  ${
m M}_{\odot}$ ) Compact object, NS or BH (1–5  ${
m M}_{\odot}$ )

 $\overline{P pprox 3.9 \text{ d}}$  $e = 0.35 \pm 0.04$  $d = 2.5 \pm 0.5 \text{ kpc}$ 

X-rays: periodic GeV light-curve: periodic (anticorrelated) TeV light-curve: periodic Radio: persistent, small variability without orbital modulation

Aharonian et al. (2005), Casares et al. (2005), Kishishita et al. (2009), Abdo et al. (2009), Casares et al. (2012), Zabalza et al. (2013), Collmar & Zhang (2014)



# The gamma-ray binary LS 5039

#### LS 5039

 $lpha_{
m J2000} = 18^{
m h} \ 26^{
m m} \ 15.06^{
m s} \ \delta_{
m J2000} = -14^{\circ} \ 50' \ 54.3''$ 

O6.5 V star (23  $\pm$  3  ${\rm M}_{\odot})$  Compact object, NS or BH (1–5  ${\rm M}_{\odot})$ 

 $\overline{P pprox 3.9 \text{ d}}$  $e = 0.35 \pm 0.04$  $d = 2.5 \pm 0.5 \text{ kpc}$ 

X-rays: periodic GeV light-curve: periodic (anticorrelated) TeV light-curve: periodic Radio: persistent, small variability without orbital modulation

Aharonian et al. (2005), Casares et al. (2005), Kishishita et al. (2009), Abdo et al. (2009), Casares et al. (2012), Zabalza et al. (2013), Collmar & Zhang (2014)



Radio spectra from 1.4 to 15 GHz

Spectral index  $\alpha = -0.46 \pm 0.01$  , where  $\textit{S}_{\nu} \propto \nu^{\alpha}$ 

Variability  $<\pm 25$  %.

```
Martí et al. (1998)
```



#### Previous radio observations of LS 5039

The radio emission is resolved at VLBI scales (Moldón et al. 2012)



Observations along one orbital period Dominant core emission ( $\lesssim 1$  mas, or 3 AU) Extended emission orbitally modulated at mas scales (<10% of the total flux density)



#### Previous radio observations of LS 5039

At low frequencies, only a few observations have been published with contradictory results.



Important differences in the calibration procedures

PhD Thesis - Barcelona



VLA and GMRT archival observations analyzed in this work GMRT-WSRT observations proposed and analyzed as PI in 2013



VLA and GMRT archival observations analyzed in this work GMRT-WSRT observations proposed and analyzed as PI in 2013

# High-frequency variability

VLA monitoring in 2002





• Variability on timescales as short as one day



- Variability  $<\pm25$  %
- No visible orbital modulation

Flux density values compatible with the ones reported at other epochs (e.g. Martí et al. 1998)



# High-frequency variability

VLA monitoring in 2002

- Dashed lines: power-laws determined from 5.0 and 8.5 GHz
- $\approx$  power-law at GHz frequencies
- Slight curvature < 2 GHz
- Average spectral index:  $\alpha = -0.57 \pm 0.12$



59

PhD Thesis - Barcelona

# Low-frequency variability

#### Archival GMRT observations 2004–2008



VLA and GMRT archival observations analyzed in this work GMRT-WSRT observations proposed and analyzed as PI in 2013

PhD Thesis - Barcelona



# Low-frequency variability

Archival GMRT observations 2004–2008

- Observations spread over 4 yr
- Persistent emission
- Variability at  $> 6\sigma$
- No orbital modulation
- Average spectral index  $\alpha = +0.5 \pm 0.8$





### Non-simultaneous spectrum of LS 5039

Combining data from 1998 to 2013

- Small variability along the years  $(< 25 \% \forall \nu)$
- "Similar" profile in average
- Turnover at  $\sim$  0.5 GHz
- Source undetected at 150 MHz
- Only two data points at 2.3 GHz (not representative)
- The mean square errors have been used in the average data



A first approximation (toy model)

Most of the radio emission comes from a compact core  $\lesssim 1$  mas or  $\sim 3$  AU (semi major axis: 0.19 AU) (Moldón et al. 2012)

We have built a very simple model to understand the spectrum:

- Compact core  $\rightsquigarrow$  one-zone model
- No orbital modulation  $\rightsquigarrow$  symmetric emitting region (spheric)
- For simplicity  $\rightsquigarrow$  isotropic and homogeneous
- We consider the presence of a synchrotron emitting plasma
- Turnover produced by either SSA, FFA or Razin effect (and combinations of them)



A first approximation (toy model)

We have built a very simple model to understand the spectrum:

• Synchrotron emission, with a particle injection:

 $n(E)\mathrm{d}E = KE^{-p}\mathrm{d}E$ 

• Synchrotron self-absorption (SSA), from relativistic plasma:

$$\kappa_{\rm SSA} \propto \textit{KB}^{(p+2)/2} \nu^{-(p+4)/2}$$

• Free-free absorption (FFA), from thermal plasma:

$$\kappa_{
m FFA} \propto n_{
m e}^2 T_{
m w}^{-3/2} \nu^{-2}$$

• Razin effect, from thermal plasma:

$$S_{
u} \rightsquigarrow S_{
u} e^{-
u_{
m R}/
u}$$
,  $u_{
m R} \equiv 20 n_{
m e} B^{-1}$ 

### Non-simultaneous spectrum of LS 5039

#### Combining data from 1998 to 2013

- The average spectrum can be fitted by typical models:
  - SSA
  - Synchrotron + FFA
  - $\circ$  SSA + Razin
  - $\circ$  FFA + Razin
  - $\circ$  SSA + FFA
- Small differences between fits
- SSA+Razin is the best fit
- But the other fits are not statistically rejected



### Quasi-simultaneous spectrum of LS 5039

GMRT & WSRT campaign in 2013 July 19 and 21



<sup>26</sup>/<sub>59</sub>

#### Quasi-simultaneous spectrum of LS 5039

GMRT & WSRT campaign in 2013 July 19 and 21

Two 0.15–5 GHz spectra at orbital phases  $\phi \approx$  0.9 and 0.4

- Similar spectra, but subtle differences between the two epochs
- Persistent turnover at  $\sim 0.5~\text{GHz}$
- Stronger emission on 2013 July 19
- 2013 July 19: pure SSA spec.
- 2013 July 21: SSA+Razin spec.
- FFA provides poor fits



GMRT data: 235 and 610 MHz WSRT data: 2.3 and 5.0 GHz 154 MHz GMRT data taken every other day (on 2013 July 18, 20 and 22)



The three spectra show a similar shape but with subtle differences:

- Avg. spectrum: SSA+Razin
- July 19 spectrum: SSA
- July 21 spectrum: SSA+Razin

| Fit           | p               | $\Omega B^{-1/2}$                     | $K\ell B^{(p+2)/2}$                                  | $ u_{ m R}$                      |
|---------------|-----------------|---------------------------------------|------------------------------------------------------|----------------------------------|
|               |                 | $\left[10^{-16}{\rm G}^{-1/2}\right]$ | $\left[10^{3}{\rm cm}{\rm G}^{({\rm p}+2)/2}\right]$ | $\left[10^{8}\mathrm{Hz}\right]$ |
| Avg. spectrum | $2.16\pm0.04$   | $500\pm800$                           | $3\pm5$                                              | $4.1\pm0.2$                      |
| July 19       | $1.867\pm0.014$ | $3.9\pm 0.3$                          | $(2.1\pm0.9)	imes10^6$                               | _                                |
| July 21       | $2.24\pm0.08$   | $200\pm600$                           | $0.4 \pm 1.7$                                        | $4.1\pm0.7$                      |

• Estimating the free-free opacity from the stellar wind:

$$\tau_{\nu}^{\rm FF} \propto \dot{M} \; \nu^{-2} \ell^{-3} v_{\rm w}^{-2} T_{\rm w}^{-3/2}$$

Coherent picture from fits and  $\tau_{\nu}^{\rm FF}$ 

- Avg. spectrum: SSA+Razin
- July 19 spectrum: SSA
- July 21 spectrum: SSA+Razin
- Coherent picture with:

$$\begin{array}{ll} \ell & \sim & 0.85 \ \mathrm{mas} \ (\sim 2.5 \ \mathrm{AU}) \\ B & \sim & 20 \ \mathrm{mG} \\ n_{\mathrm{e}} & \sim & 4 \times 10^5 \ \mathrm{cm}^{-3} \\ \dot{M} & \sim & 5 \times 10^{-8} \ \mathrm{M}_{\odot} \ \mathrm{yr}^{-1} \end{array}$$



59

PhD Thesis - Barcelona

Coherent picture from fits and  $\tau_{\nu}^{\rm FF}$ 

- Avg. spectrum: SSA+Razin
- July 19 spectrum: SSA
- July 21 spectrum: SSA+Razin
- Coherent picture with:

$$\begin{array}{l}\ell & \sim & 0.85 \ \mathrm{mas} \ (\sim 2.5 \ \mathrm{AU}) \\ B & \sim & 20 \ \mathrm{mG} \\ n_{\mathrm{e}} & \sim & 4 \times 10^5 \ \mathrm{cm}^{-3} \\ \dot{M} & \sim & 5 \times 10^{-8} \ \mathrm{M}_{\odot} \ \mathrm{yr}^{-1} \end{array}$$



59

PhD Thesis - Barcelona

Coherent picture from fits and  $\tau_{\nu}^{\rm FF}$ 

- Avg. spectrum: SSA+Razin
- July 19 spectrum: SSA
- July 21 spectrum: SSA+Razin
- Coherent picture with:

$$\begin{array}{l}\ell & \sim & 0.85 \ \mathrm{mas} \ (\sim 2.5 \ \mathrm{AU})\\ B & \sim & 20 \ \mathrm{mG}\\ n_{\mathrm{e}} & \sim & 4 \times 10^5 \ \mathrm{cm}^{-3}\\ \dot{M} & \sim & 5 \times 10^{-8} \ \mathrm{M}_{\odot} \ \mathrm{yr}^{-1}\end{array}$$



PhD Thesis - Barcelona
# Modeling the LS 5039 spectrum

Coherent picture from fits and  $\tau_{\nu}^{\rm FF}$ 

- Avg. spectrum: SSA+Razin
- July 19 spectrum: SSA
- July 21 spectrum: SSA+Razin
- Coherent picture with:

$$\begin{array}{ll} \ell & \sim & 0.85 \ \mathrm{mas} \ (\sim 2.5 \ \mathrm{AU} \\ B & \sim & 20 \ \mathrm{mG} \\ n_{\mathrm{e}} & \sim & 4 \times 10^5 \ \mathrm{cm}^{-3} \\ \dot{M} & \sim & 5 \times 10^{-8} \ \mathrm{M}_{\odot} \ \mathrm{yr}^{-1} \end{array}$$



59

PhD Thesis - Barcelona

# **Conclusions from the modeling**

- **Significant mixing** of the non-relativistic wind inside the synchrotron radio emitting relativistic plasma, even close to ~ 100% (consistent with recent simulations, e.g. Bosch-Ramon et al. 2012,2015)
- The derived mass-loss rate (model dependent, but in agreement with recent results from Casares et al., in prep.) implies that the **wind is clumpy**
- Presence of **Razin effect**, widely observed in Colliding Wind Binaries, that gives further support to the scenario of the **young non-accreting pulsar**



### Conclusions

- We report day to day variability, trends on week timescales, and the absence of orbital variability. Variability  $<\pm25$ % is observed at all frequencies (0.23–15 GHz) even on year timescales
- Persistent turnover at around  $\sim 0.5~\text{GHz}$
- Upper-limits for the emission at 150 MHz
- A simple model explains the observed spectra, indicating that the turnover is dominated by SSA
- Razin effect is observed at some epochs
- We have obtained a coherent picture that explains the observed spectra
- More accurate data (specially at low frequencies) will allow us to work with more detailed models and understand the geometry of the radio emitting region



# **Outline of the PhD Thesis**

ntroduction The γ-ray sky Binary systems with γ-ray emission Motivation of this Thesis

#### Part I: Gamma-ray binaries

LS 5039 and its low-frequency emission (GMRT, VLA, WSRT) LS I +61 303 and its low-frequency emission (GMRT and LOFAR) HESS J0632+057, new EVN observations

Part II: Colliding wind binaries HD 93129A, a new colliding wind binary discovered

Part III: Searching for new possible gamma-ray binaries The candidate TYC 4051-1277-1 MWC 656, the first Be/BH binary system

Summary and conclusions

# The gamma-ray binary LS I +61 303

#### LS I +61 303

B0 Ve star  $(12.5 \pm 2.5 \text{ M}_{\odot})$  $d = 2.0 \pm 0.2 \text{ kpc}$  $e = 0.72 \pm 0.15$ 

$$\begin{split} P_{\rm orb} &= 26.496 \pm 0.003 ~{\rm d} \\ P_{\rm super} &= 1667 \pm 8 ~{\rm d} \end{split}$$

Variability at all frequencies X-ray–TeV: correlated(?) Radio–TeV: correlated Optical–Radio: correlated GeV–TeV: anticorrelated

Frail & Hjellming (1991), Casares et al. (2005), Gregory (2002)



59

PhD Thesis - Barcelona

Large variability at radio frequencies Emission orbitally modulated ( $P_{\rm orb} \approx 26.5$  d)



#### The outbursts are different from cycle to cycle

Radio pulsar searches have been conducted without success (McSwain et al. 2011, Cañellas et al. 2012) Therefore, the observed radio emission is not pulsed



Focusing on a single outburst (Strickman et al. 1998)



PhD Thesis - Barcelona

59

# Superorbital modulation

Periodic modulation of the amplitude and the phases of these outbursts with  $P_{\rm so} \approx 1\,667$  d ( $\approx 4.4$  yr)



59

# Superorbital modulation

Periodic modulation of the amplitude and the phases of these outbursts with  $P_{\rm so} \approx 1\,667$  d ( $\approx 4.4$  yr)



## Summary of the observations analyzed in this work



GMRT archival data analyzed in this work LOFAR observations conducted within the TKP at our request

<sup>35</sup>/<sub>59</sub>





Orbital and superorbital modulation 235 MHz  $\approx$  anticorrelated with 610 MHz Significant differences between frequencies

Delays in orbital phase,  $\Delta \phi$ , between frequencies

Benito Marcote





Orbital and superorbital modulation 235 MHz  $\approx$  anticorrelated with 610 MHz Significant differences between frequencies

 $\frac{36}{59}$ 

Delays in orbital phase,  $\Delta\phi,$  between frequencies





Orbital and superorbital modulation 235 MHz  $\approx$  anticorrelated with 610 MHz Significant differences between frequencies

 $\frac{36}{59}$ 

Delays in orbital phase,  $\Delta\phi,$  between frequencies





Orbital and superorbital modulation 235 MHz  $\approx$  anticorrelated with 610 MHz Significant differences between frequencies Delays in orbital phase  $\Delta \phi$  between

 $^{36}/_{59}$ 

Delays in orbital phase,  $\Delta\phi,$  between frequencies





Orbital and superorbital modulation 235 MHz  $\approx$  anticorrelated with 610 MHz Significant differences between frequencies Delays in orbital phase  $\Delta \phi$  between

 $^{36}/_{59}$ 

Delays in orbital phase,  $\Delta\phi,$  between frequencies

### First detection of LS I +61 303 at 150 MHz



Field of view around LS I +61 303 at 150 MHz as seen by LOFAR



# First detection of LS I +61 303 at 150 MHz

59

Light-curve at 150 MHz

Cannot be compared with the previous ones because of the completely different superorbital phase

Poor sampling, we can only point out a possible shift between the two frequencies, but more data is clearly needed





Light-curve at 150 MHz

Cannot be compared with the previous ones because of the completely different superorbital phase

Poor sampling, we can only point out a possible shift between the two frequencies, but more data is clearly needed





# Modeling the radio emitting region

Estimating the delays between frequencies for the peak of the emission

One-zone model with an expanding radio emitting region

Delays interpreted as changes in the opacity of this region due to its expansion, considering SSA and FFA

Assuming that FFA dominates, the expansion velocity would be

 $v_{\rm FFA} = 700 \pm 200 \ {\rm km \ s^{-1}}$ 

But  $\dot{M}$  is not well constrained



PhD Thesis - Barcelona

# Modeling the radio emitting region

Assuming a SSA dominated region and two different dependences of *B*:

 $B \sim \ell^{-2}$  $v_{\rm SSA} = 1\,000 \pm 140 \ {\rm km \ s^{-1}}$ 

$$\begin{split} \pmb{B} \sim \pmb{\ell}^{-1} \\ \nu_{\rm SSA} = 17\,000 \pm 3\,000 \ \rm km \ s^{-1} \end{split}$$

But it is poorly constrained

FFA and SSA with  $B\sim \ell^{-2}$  predict a delay of about  $\sim$  1.0 at 150 MHz

Observed delay: 0.0-0.5 (or 1.0-1.5) but at different superorbital phase



### Conclusions

- First detection of a gamma-ray binary at a frequency as low as 150 MHz
- The superorbital variability is still present below 1  $\mathsf{GHz}$
- The shape of the outbursts is significantly different at these low frequencies
- A simple model with an expanding emitting region is plausible to describe the observed behavior, leading to subrelativistic expansion velocities (that do not fit in the microquasar scenario)
- A FFA dominated or a SSA with  $B\sim\ell^{-2}$  provides expansion velocities close to the stellar wind one:  $\sim1\,000$  km s^{-1}
- A SSA dominated with  $B\sim \ell^{-1}$  provides a significant higher expansion velocity  $\sim 17\,000~{\rm km~s^{-1}}$
- Although a dependence of  $B \sim \ell^{-2}$  is expected in our model, it is not expected for the structure produced by the shock between the stellar and relativistic winds



RESULTS

# **Outline of the PhD Thesis**

ntroduction The γ-ray sky Binary systems with γ-ray emission Motivation of this Thesis

#### Part I: Gamma-ray binaries

LS 5039 and its low-frequency emission (GMRT, VLA, WSRT) LS I +61 303 and its low-frequency emission (GMRT and LOFAR) HESS J0632+057, new EVN observations

Part II: Colliding wind binaries HD 93129A, a new colliding wind binary discovered

Part III: Searching for new possible gamma-ray binaries The candidate TYC 4051-1277-1 MWC 656, the first Be/BH binary system

Summary and conclusions

# The gamma-ray binary HESS J0632+057



Main X-ray outburst ( $\phi \sim 0.35$ ) Secondary X-ray outburst ( $\phi \sim 0.6$ -0.9)

X-ray–TeV correlated

Radio: only variability at VLBI scales: Extended emission filtered out



59

# **EVN and WSRT observation**

10-hr observation on 2014 Feb 20  $\phi = 0.76$  At 1.6 GHz

Source not detected in neither the EVN nor the WSRT data Obtained upper-limits:

| Facility | 3- $\sigma$ upper-limit      |
|----------|------------------------------|
|          | $(\mu Jy \text{ beam}^{-1})$ |
| EVN      | 30                           |
| WSRT     | 700                          |



Position of HESS J0632+057 in the WSRT image and the EVN one (zoom)  $% \left( \left( x,y\right) \right) =\left( x,y\right) +\left( x,y\right) \right) =\left( x,y\right) +\left( x,y\right) \right) \left( x,y\right) +\left( x,y\right)$ 



### **Results and discussion**

WSRT upper-limit at the level of previous GMRT observations

EVN upper-limit one order of magnitude fainter than previous EVN detections during the main X-ray outburst

Assuming a similar X-ray behavior at this epoch,

| Epoch              | $F_{ m radio}/F_{ m X}$ |
|--------------------|-------------------------|
| main outburst      | $\sim 10^{-6}$          |
| secondary outburst | $\lesssim 10^{-7}$      |



<sup>44</sup>/59

### **Discussion and conclusions**

Why is this large decay seen during the secondary X-ray outburst? *We do not know.* But, there are several possible questions/answers...

- **Do radio and X-ray emission arise from the same particle population?** Typically the same population of accelerated particles producing the X-ray emission also produces the radio emission
- Non-simultaneous radio and X-ray data The X-ray emission of HESS J0632+057 could be particularly faint at the epoch of the radio observations
- Source observed before the secondary X-ray outburst took place? Large differences in the profile of the secondary X-ray outburst



# **Outline of the PhD Thesis**

Introduction

The  $\gamma$ -ray sky Binary systems with  $\gamma$ -ray emission Motivation of this Thesis

Part I: Gamma-ray binaries LS 5039 and its low-frequency emission (GMRT, VLA, WSRT) LS I +61 303 and its low-frequency emission (GMRT and LOFAR) HESS J0632+057, new EVN observations

#### Part II: Colliding wind binaries HD 93129A, a new colliding wind binary discovered

Part III: Searching for new possible gamma-ray binaries The candidate TYC 4051-1277-1 MWC 656, the first Be/BH binary system

Summary and conclusions

# The colliding wind binary HD 93129A

#### HD 93129A

O2 lf\* star (Aa) O3.5 V star (Ab)  $d \sim 2.5$  kpc at the Carina nebula

 $\begin{array}{l} \mbox{System mass: } 200\pm45~\mbox{M}_\odot \\ \nu_\infty = 3200\pm200~\mbox{km~s}^{-1} \\ \mbox{System luminosity: } \sim \!\! 1.6\times10^6~\mbox{L}_\odot \\ \mbox{X-ray luminosity: } \sim \!\! 1.3\times10^{-7}~\mbox{L}_{\rm bol} \\ \mbox{Non-thermal radio emission coincident} \\ \mbox{with the system: } 1\!\!-\!\!10~\mbox{mJy at} \\ \mbox{1.4-24.5~GHz} \end{array}$ 

Walborn (1995), Taresch et al. (1997), Walborn et al. (2002), Repolust et al. (2004), Benaglia et al. (2006), Maíz Apellániz et al. (2008)



# Motivation and multiwavelength campaign

The two massive stars could form a binary system A close distance between them would produce a wind collision region

Multiwavelength campaign to unveil the nature of this system:

#### • Optical

HST observations: accurate astrometry of both components and their relative proper motions

#### • Radio

LBA observation: to resolve the radio emission and its location ATCA observations: determination of the radio spectrum

The multiwavelength data would clarify the possible nature of this system and if HD 93129A is a colliding wind binary



#### **Radio observations**

We have analyzed an observation conducted on 2008 August 6 at 2.3 GHz with five LBA antennas (Parkes, Mopra, ATCA, Ceduna and Hobart)

The synthesized beam is  $15\times11$  mas², PA=  $85^\circ$ 



48/59

Benito Marcote

### **Results and discussion**

Estimating the wind-momentum rates

Ratio between the wind momentum rates of the two stars:

$$\eta = \left(\frac{R_{\rm b}}{R_{\rm a}}\right)^2 = \frac{\dot{M}_{\rm b} v_{\rm b}}{\dot{M}_{\rm a} v_{\rm a}}$$

Assuming the position of the two stars (inferred from the *HST*/FGS data),

 $\eta \sim 0.5$ 

Distance between stars enough to reach the terminal wind velocity values,  $v_{\rm b} \sim v_{\rm a}$ , and then

$$\dot{M}_{
m b} \sim 0.5 \dot{M}_{
m a}$$



### **Results and discussion**

ATCA data from observations conducted in 2003-2009 at 1.4-24 GHz

Spectral indexes (unabsorbed region):

 $\alpha = -1.03 \pm 0.09$  $\alpha = -1.21 \pm 0.03$ 

Stronger emission from 2003 to 2009 ( $\sim$  40% increase)

Drift of the turnover frequency, indicative of a stronger and denser WCR



Both expected if approaching to periastron

Synchrotron emission models plus FFA and thermal component



# **Discussion and conclusions**

#### A new colliding wind binary

The presence of an extended and curved radio emission coincident with a position between the two stars and orthogonal to the line joining them is the best argument to consider HD 93129A as a new colliding wind binary

#### • Wind-momentum rates

Rough estimation of the wind-momentum rates ratio,  $\eta\sim 0.5$ 

#### Estimation of the orbital parameters

No accurate estimation of the putative orbit. Our fit suggests:  $P_{\rm orb}\sim 200$  yr,  $e\gtrsim 0.9$ , and the periastron passage in 2024

#### In the future...

We expect an enhanced radio emission during the approach to periastron. If the distance is small enough, HD 93129A could even show  $\gamma$ -ray emission



# **Outline of the PhD Thesis**

Introduction

The  $\gamma$ -ray sky Binary systems with  $\gamma$ -ray emission Motivation of this Thesis

rt I: Gamma-ray binaries LS 5039 and its low-frequency emission (GMRT, VLA, WSRT) LS I +61 303 and its low-frequency emission (GMRT and LOF HESS J0632+057, new EVN observations

Part II: Colliding wind binaries HD 93129A, a new colliding wind binary discovered

Part III: Searching for new possible gamma-ray binaries The candidate TYC 4051-1277-1 MWC 656, the first Be/BH binary system

Summary and conclusions



# The candidate TYC 4051-1277-1

Cross-identification between the optical LS catalog and the WENSS/NVSS radio surveys

B9 star coincident with a NT radio source

WSRT and VLA observations conducted to verify this possible association

#### Blended double-lobed shape Spectrum clearly non-thermal **Typical from a radio galaxy**

The astrometry rejects the possible association

We unveiled the nature of this radio source and rejected its association with the B9 star Compatible with an unassociated *Fermi* source



# MWC 656, the first Be/BH binary system

Introduction

- γ-ray flare detected by AGILE on 2012 above 100 MeV (Lucarelli et al. 2010)
- Two possible origins: the quasar RX J2243.1+4441 and the Be star MWC 656 (Williams et al. 2010)
- Photometric period of  $60.37\pm0.04~\text{d}$
- $\bullet\,$  Casares et al. (2014) reported the presence of a black hole of 3.8–6.9  ${\rm M}_{\odot}$
- Multiwavelength campaign to study in detail the source from radio to TeV


Searching for the radio counterpart

# Five WSRT observations at 1.4 GHz Strong quasar affecting the FoV

Three VLA observations at 3.0 GHz We do not detect MWC 656 Most restrictive 3- $\sigma$  upper-limit: 40 µJy beam<sup>-1</sup>

Better coverage of the orbit

About the quasar:

Persistent compact core of  $\sim$  2 mJy

Variability in the south lobe, increase of a factor 2 in 10 d





Searching for the radio counterpart

Five WSRT observations at 1.4 GHz Strong quasar affecting the FoV

Three VLA observations at 3.0 GHz We do not detect MWC 656 Most restrictive  $3-\sigma$  upper-limit: 40 µJy beam<sup>-1</sup> Better coverage of the orbit

About the quasar:

Persistent compact core of  $\sim 2 \text{ mJy}$ Variability in the south lobe, increase of a factor 2 in 10 d



Searching for the radio counterpart

Five WSRT observations at 1.4 GHz Strong quasar affecting the FoV

Three VLA observations at 3.0 GHz We do not detect MWC 656 Most restrictive  $3-\sigma$  upper-limit: 40 µJy beam<sup>-1</sup> Better coverage of the orbit

#### About the quasar:

 $\label{eq:persistent compact core of $\sim$ 2 mJy} $$ Variability in the south lobe, $$ increase of a factor $2$ in $10$ d $$ $$ d $$ $$ 



5 (J2000)

Conclusions

- MWC 656 remains undetected at radio frequencies. The radio to X-ray correlation observed in BH HMXBs predicts a flux density just below the current upper-limits
- The current radio observations cover different orbital phases, and we discard radio emission above  $\sim$  50  $\mu Jy$
- The quasar is still a possible candidate to produce  $\gamma$ -ray flares. However, the core seems to be quite stable along the time
- The fast variability observed in the south lobe must be studied in detail

# **Outline of the PhD Thesis**

Introduction

The  $\gamma$ -ray sky Binary systems with  $\gamma$ -ray emission Motivation of this Thesis

Part I: Gamma-ray binaries

LS 5039 and its low-frequency emission (GMRT, VLA, WSRT) LS I +61 303 and its low-frequency emission (GMRT and LOFAR) HESS J0632+057, new EVN observations

Part II: Colliding wind binaries HD 93129A, a new colliding wind binary discovered

Part III: Searching for new possible gamma-ray binaries The candidate TYC 4051-1277-1 MWC 656, the first Be/BH binary system

Summary and conclusions

| Summary of observations presented in the Thesis |          |          |           |      |                                                        |
|-------------------------------------------------|----------|----------|-----------|------|--------------------------------------------------------|
| Source                                          | Facility | Freqs.   | Year      | Туре | Comments                                               |
|                                                 |          | (GHz)    |           |      |                                                        |
| LS 5039                                         | VLA      | 1–15     | '98,02    | А    | First detailed study at low-freq.<br>(Razin effect)    |
|                                                 | WSRT     | 1–5      | '13       | ΡI   |                                                        |
|                                                 | GMRT 0   | .15–0.61 | '04–08,13 | A/PI | (1.42.11 011000)                                       |
| LS I +61 303                                    | GMRT 0   | .15–0.61 | '05–08    | А    | Discovery of orbital variability                       |
|                                                 | LOFAR    | 0.15     | '13       | С    | at 150 MHz                                             |
| HESS J0632+057                                  | EVN      | 1.6      | '14       | ΡI   | First VLBI observation during secondary X-ray outburst |
| HD 93129A                                       | LBA      | 2.3      | '08       | А    | Discovery of the CWB                                   |
| TYC 4051-1277-1                                 | WSRT     | 2.3      | '12       | ΡI   | First search                                           |
| MWC 656                                         | WSRT     | 1.4      | '11–12    | ΡI   | First search with connected in-<br>terferometers       |
|                                                 | VLA      | 3.0      | '12       | ΡI   | Deep images. Study of quasar                           |

A: archival data analyzed by the author

PI: observations conducted and analyzed by the author as PI

C: observations conducted as co-I and analyzed by the author

# Conclusions of the Thesis (1/2)

#### LS 5039

- Persistent variability from day to year timescales with a small variability from low to high frequencies
- Clarification of the previously contradictory results at low frequencies
- Determination of the presence of a persistent turnover at  $\sim 0.5~\text{GHz}$
- Explanation of the spectra with a simple model considering different absorption processes. First time that the Razin effect is observed in a gamma-ray binary

#### LS I +61 303

- First detection at 150 MHz with GMRT and LOFAR
- Detection of the superorbital modulation at low frequencies
- Study of the orbital variability at low frequencies, reporting significant differences as a function of the frequency
- An expanding emitting region can explain the observed delays between the peak of the maximum emission, with a clearly subrelativistic expansion velocity. For some models the expansion velocity is close to the stellar wind one

Low frequency radio observations have proven to be an important tool to explore physical parameters of the emitting regions in gamma-ray binaries

# Conclusions of the Thesis (1/2)

#### LS 5039

- Persistent variability from day to year timescales with a small variability from low to high frequencies
- Clarification of the previously contradictory results at low frequencies
- Determination of the presence of a persistent turnover at  $\sim 0.5~\text{GHz}$
- Explanation of the spectra with a simple model considering different absorption processes. First time that the Razin effect is observed in a gamma-ray binary

#### LS I +61 303

- First detection at 150 MHz with GMRT and LOFAR
- Detection of the superorbital modulation at low frequencies
- Study of the orbital variability at low frequencies, reporting significant differences as a function of the frequency
- An expanding emitting region can explain the observed delays between the peak of the maximum emission, with a clearly subrelativistic expansion velocity. For some models the expansion velocity is close to the stellar wind one

Low frequency radio observations have proven to be an important tool to explore physical parameters of the emitting regions in gamma-ray binaries

## Conclusions of the Thesis (2/2)

#### HESS J0632+057

- First VLBI observations during the secondary X-ray outburst
- Strong decay of at least one order of magnitude of its radio emission, which is not seen at other wavelengths

#### HD 93129A

- Discovery of this new colliding wind binary with multiwavelength observations
- Rough estimation of the wind-momentum rates ratio with the study of the wind collision region

#### TYC 4051-1277-1

- No radio counterpart found
- Identification of a field radio source as a radio galaxy

#### **MWC 656**

- Upper-limits for the radio emission at different orbital phases
- First measurements of the radio flux density for different parts of the quasar RX J2243.1+4441



Thank you!



Benito Marcote

PhD Thesis - Barcelona

# Back-up slides



Benito Marcote

PhD Thesis - Barcelona

### Introduction

#### The gamma-ray sky



Very high-energy  $\gamma$ -ray all-sky map showing the 161 sources discovered up to now emitting at TeV energies. TevCat catalog (tevcat.uchicago.edu).

Benito Marcote

59

### Accurate GMRT data reduction (Marcote et al. 2015, Appendix)

We are observing radio sources within the Galactic Plane, but using flux calibrators outside the G. Plane



Jodrell-Bank 250-feet + Effelsberg 100-m + Parkes 64-m



Benito Marcote

PhD Thesis - Barcelona

### Accurate GMRT data reduction (Marcote et al. 2015, Appendix)

We are observing radio sources within the Galactic Plane, but using flux calibrators outside the G. Plane

- The Galactic diffuse emission contributes differently to the target source than to the flux calibrators, affecting to the  $T_{\rm sys}$  of the antennas
- The  ${\cal T}_{\rm sys}$  needs to be compensated to properly estimate the flux density values in the target field of view
- Usually done automatically in most telescopes. Not in the case of GMRT
- Godambe et al. (2008) did not take into account these corrections
- Pandey et al. (2007) used the Haslam approximation
- We conducted dedicated non-correlated observations with the GMRT to directly measure the Galactic contribution to properly subtract it
- We observed significant differences between these two methods (as noted in Sirothia 2009)

### Razin effect

The synchrotron emission propagates through a plasma, which presents a refractive index *n*. Always that *n* < 1 the beaming effect is partially suppressed. Although at high frequencies the effect is negligible, at low frequencies (with  $\nu \ll \nu_{\rm p}$ , where  $\nu_{\rm p}$  is the plasma frequency) it suppresses the beaming effect since

$$n^2 = 1 - \left(rac{
u_{
m p}}{
u}
ight)^2$$

and the beaming effect goes as

$$heta_{
m b} pprox \gamma^{-1} = \sqrt{1 - n^2 \beta^2}$$

- Presence of a thermal plasma surrounding the emitting region.
- Attenuation of the synchrotron radiation at low frequencies.
- Widely reported in Colliding Wind Binaries, solar wind,...
- A good approximation is an exponential attenuation at low frequencies (Dougherty et al. 2003):

$$S_
u \propto S_
u e^{-
u_{
m R}/
u}$$
,  $u_{
m R} \equiv 20 n_{
m e} B^{-1}$ 

### WSRT observations of TYC 4051-1277-1



59

### List of publications

- Marcote, B., et al., 2015, MNRAS, submitted
- Marcote, B., Ribó, M., Paredes, J. M., Ishwara-Chandra, C. H., 2015, MNRAS, 451, 4578
- Benaglia, P., Marcote, B., Moldón, J., Nelan, E., De Becker, M., Dougherty, S. M., Koribalski, B., 2015, A&A, 579, A99
- Martí, J., Luque-Escamilla, P L., Casares, J., Marcote, B., Paredes-Fortuny, X., Ribó, M., Paredes, J. M., Núñez, J., 2015, Ap&SS, 356, 277
- Marcote, B., Benaglia, P., Moldón, J., Nelan, E., De Becker, M., Dougherty, S. M., Koribalski, B., 2014, in proceedings of the 12th European VLBI Network Symposium and Users Meeting. Cagliari, Italy, PoS(EVN2014)57
- Marcote, B., Moldón, J., Ribó, M., Paredes, J. M., Paragi, Z., 2014, in proceedings of the 12th European VLBI Network Symposium and Users Meeting. Cagliari, Italy, PoS(EVN2014)95
- Marcote, B., Ribó, M., Paredes, J. M., Ishwara-Chandra, C. H., Swinbank, J., Broderick, J., Fender, R., Markoff, S., Wijers, R., 2014, in proceedings of The Metrewavelength Sky Conference. Pune, India, Bull. Astr. Soc. India
- Marcote, B., Ribó, M., Paredes, J. M., Swinbank, J., Broderick, J., Fender, R., Markoff, S., Wijers, R., 2012, AIP Conf. Proc., 1505, 374

### Future work (open projects)

- We have been granted with low-frequency GMRT observations covering a full orbital cycle of LS I +61 303 (and we expect the decision for simultaneous LOFAR ones)
- We will propose observations of HD 93129A with the LBA during the coming years
- MWC 656 has recently been observed deeply with *Chandra* and the VLA (data analysis ongoing)
- HESS J0632+057 could be re-observed several times with the EVN, ideally with simultaneous X-ray observations