Low Frequency Radio Observations of Gamma-Ray Binaries

Benito Marcote

Department d'Astronomia i Meteorologia University of Barcelona

September 7, 2012

Table of Contents

Introduction

Gamma-ray binaries

The Gamma-Ray Binary LS 5039

Radio Observatories

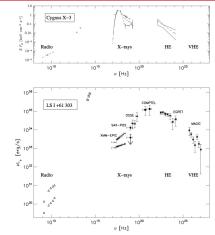
Observations and Results

VLA Monitoring Low Frequency VLA Observation LOFAR Observation Variability of LS 5039

Conclusions

Binaries Displaying Gamma-Ray Emission

- High-Energy Astrophysics
 - High Energy (HE): 100 MeV 100 GeV
 - Very High Energy (VHE): $\gtrsim 100~{
 m GeV}$
- There are some binary systems detected as high energy and/or very high energy gamma-ray emitters.
- Emission from radio to gamma-rays.
- Formed by
 - A normal star (the donor star)
 - A compact object (neutron star or black hole)
- Two types of these systems:
 - X-ray binaries
 - 2 Gamma-ray binaries


Binaries Displaying Gamma-Ray Emission

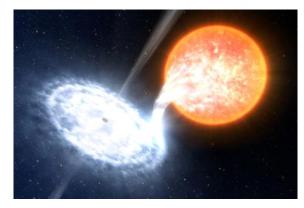
X-ray binaries

Strong luminosity in X-rays: NT-SED dominated by the X-ray emission.

Gamma-ray binaries

Strong luminosity in gamma-rays: NT-SED dominated by the gamma-ray emission.

Adapted from Moldón, PhD Thesis, 2012


Note: NT-SED: non-thermal spectral energy distribution

Gamma-Ray Binary System Scenarios

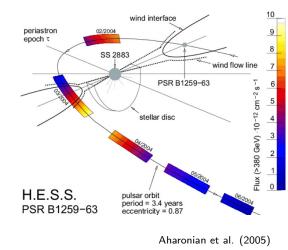
Microquasar scenario

The compact object accretes matter from the star

- X-rays: accretion disk or corona
- HE: jets & compact object vicinity
- Radio: jets

Credit: ESO

Gamma-Ray Binary System Scenarios


Binary pulsar scenario

(young non-accreting pulsar scenario)

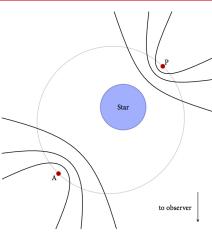
Strong shock between both winds:

- Relativistic pair plasma wind from the pulsar
- Stellar wind from the massive companion star

Originally proposed by Maraschi & Treves (1981)

Radio emission from Gamma-Ray Binaries

The radio emission is strongly related with the gamma-ray emission.


- Three main non-thermal emission processes:
 - **1** Synchrotron emission ($\ll 1 \text{ GHz}$)
 - **2** Inverse Compton
 - 8 Bremsstrahlung
- Low frequencies:
 - synchrotron emission from the low-energy electrons

 $P(\nu) \propto
u^{lpha}$

- Emitting region:
 - Far away from the binary system (Durant et al. 2011)
 - arcsec-arcmin scales (Bosh-Ramon & Barkov 2011)
 - no variability (Bosh-Ramon & Barkov 2011)

- Binary system with a O6.5 star (m = 11.3) $\alpha = 18^{h} 26^{m} 15.0593^{s}$ $\delta = -14^{\circ} 50' 54.301''$
- Optically stable
- No pulsations in radio or X-rays
- HE emitter (Paredes et al. 2000)
- VHE emitter (Aharonian et al. 2005)
- Orbital variability in X-rays (Bosh-Ramon et al 2005)
- Orbital variability at TeV energies (Aharonian et al. 2006)

Radio emission

At \sim GHz frequencies:

- Non-thermal, persistent and variable emission
- No strong radio outbursts or periodic variability
- 1.5 15 GHz (Martí et al. 1998)

 $S_{\nu}[\text{mJy}] = (52 \pm 1) \ \nu[\text{GHz}]^{-0.46 \pm 0.01}$

Emission persistent with a variability $\lesssim 30\%$.

• VLBA: asymmetrical bipolar extended emission (Paredes et al. 2000) Periodic morphological variability at mas scales (Moldón et al. 2012b)

 Low frequencies (235 and 610 MHz): Godambe et al. (2008): inverted spectrum (positive spectral index) Pandey et al. (2007): no cut-off at these frequencies Large variability (~ 80%) at 235 MHz?

Radio emission

At \sim GHz frequencies:

- Non-thermal, persistent and variable emission
- No strong radio outbursts or periodic variability
- 1.5 15 GHz (Martí et al. 1998)

 $S_{\nu}[\text{mJy}] = (52 \pm 1) \ \nu[\text{GHz}]^{-0.46 \pm 0.01}$

Emission persistent with a variability \lesssim 30%.

- VLBA: asymmetrical bipolar extended emission (Paredes et al. 2000) Periodic morphological variability at mas scales (Moldón et al. 2012b)
- Low frequencies (235 and 610 MHz): Godambe et al. (2008): inverted spectrum (positive spectral index) Pandey et al. (2007): no cut-off at these frequencies Large variability (~ 80%) at 235 MHz?

Objectives

- 1 Characterize the behaviour of LS 5039 at low and very low frequencies
- 2 Detection of the large scale structure expected by the theoretical models (Durant et al. 2011)
- 3 Clarify if LS 5039 shows large variability at low frequencies.
- * To do that, we have analyzed archival data but also we have conducted new observations

The Very Large Array (VLA)

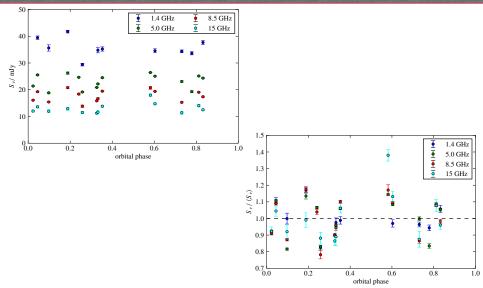
 $13^{\rm th}$ Synthesis Imaging Workshop. NRAO, Socorro. May-June, 2012

The Low Frequency Array (LOFAR)

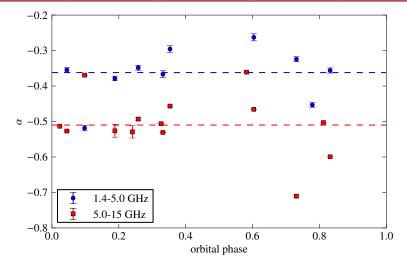
2-month stay in Amsterdam. January-March, 2012

The Giant Metrewave Radio Telescope (GMRT)

3-week stay in Pune (India) to reduce GMRT data. August, 2012


VLA Monitoring

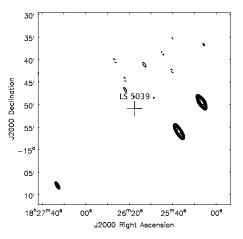
0 1.4 GHz 50'00' 5.0 GHz 16 observations 0 45' From September 23, 2002 to -14°51'00' 8 8 -14°51'00 October 21, 2002 Project code: AP444 Time-on-source: from 20 to sh?6^m16⁴.5 15*.5 15°.0 14°.5 14°.0 13°.5 J2000 Right Ascensio J2000 Right Accension 60 min. 15 GHz 8.5 GHz 487 At 1.4, 5.0, 8.5 and 15 GHz. 51" BC or C VLA configuration. 54 54* O57* -14*51'00


Point-like source

14.8

VLA Monitoring

VLA Monitoring

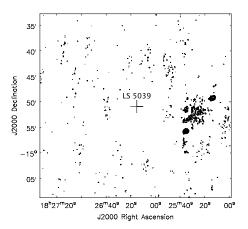


Low Frequency VLA Observation

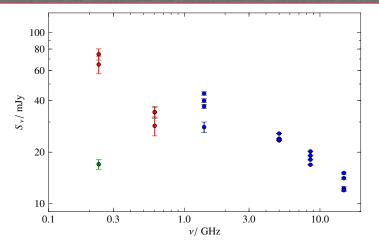
Two archival Low Frequency VLA observations December 16 and 18, 2006 Time on Source : 80 and 60 min. $\phi_{\rm pp} \sim 0.5$ and 0.0 $\nu = 330~{\rm MHz}$

Primary beam \sim 2.5 degrees Synth. beam: 1.99 \times 0.82 arcsec.

 $\label{eq:rms} {\rm rms} \approx 40~{\rm mJy}$ 3- σ Upper-limit = 120 ${\rm mJy~beam^{-1}}$



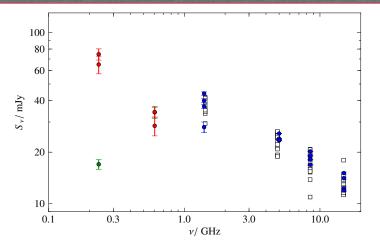
LOFAR Observation


One deep LOFAR observation (commissioning observation) October 1, 2011 Time on Source : 6-hour $\phi_{\rm pp} \sim 0.7$ $\nu = 110\text{--}160 \text{ MHz}$ 23 core + 9 remote stations used

Primary beam \sim 5 degrees Synth. beam: 15.4 \times 10.8 arcsec.

$$\label{eq:rms} \begin{split} \mathrm{rms} &\approx 11~\mathrm{mJy} \\ \text{3-}\sigma~\mathsf{Upper-limit} = 33~\mathrm{mJy~beam^{-1}} \end{split}$$

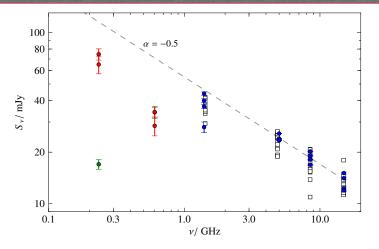
Variability of LS 5039


• Martí et al. (1998) • Godambe et al. (2008)

• Pandey et al. (2007)

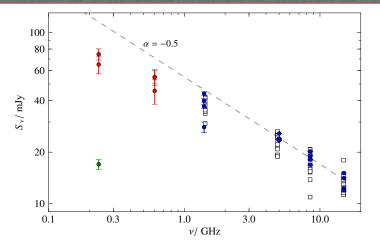
Benito Marcote (University of Barcelona)

7 of 18


Variability of LS 5039

• Martí et al. (1998) • Godambe et al. (2008)

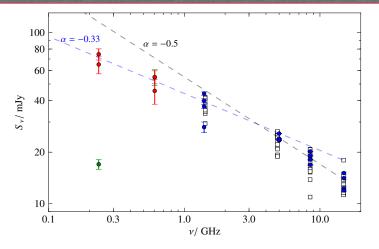
• Pandey et al. (2007) 🗆 VLA monitoring


Variability of LS 5039

• Martí et al. (1998) • Godambe et al. (2008)

• Pandey et al. (2007) 🗆 VLA monitoring

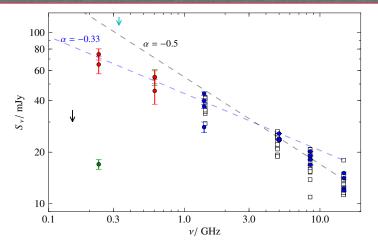
Variability of LS 5039



• Martí et al. (1998) • Godambe et al. (2008)

• Pandey et al. (2007) 🗆 VLA monitoring

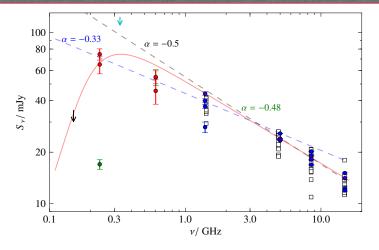
Benito Marcote (University of Barcelona)


Variability of LS 5039

• Martí et al. (1998) • Godambe et al. (2008)

• Pandey et al. (2007) 🗆 VLA monitoring

Variability of LS 5039

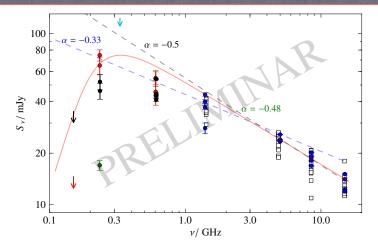


• Martí et al. (1998) • Godambe et al. (2008) \downarrow VLA 330 MHz

• Pandey et al. (2007) \Box VLA monitoring \downarrow LOFAR

Benito Marcote (University of Barcelona)

Variability of LS 5039



• Martí et al. (1998) • Godambe et al. (2008) \downarrow VLA 330 MHz

• Pandey et al. (2007) \Box VLA monitoring \downarrow LOFAR

Benito Marcote (University of Barcelona)

Variability of LS 5039

Martí et al. (1998)
Godambe et al. (2008) ↓ VLA 330 MHz ↓ GMRT
Pandey et al. (2007) □ VLA monitoring ↓ LOFAR • GMRT

Conclusions

- We have improved the spectra of LS 5039 at low frequencies
- At ${\sim}\text{GHz}$ frequencies there is no variability larger than ${\sim}$ 30% at different epochs
- Corrected 610 MHz observations fit properly with the rest of the data
- Variability at $\sim 230 \text{ MHz}$ possibly smaller than previously reported
- Absorption with strong slope: possibly no synchrotron self-absorption

In the future ...

- More archival GMRT observations are being analyzed at 235 and 610 MHz.
- We will perform a GMRT monitoring along the LS 5039 orbit at 150 and 235 MHz next year.
- Future LOFAR observations will provide us a better resolution and sensitivity.