On the origin of Fast Radio Bursts and sub-milliarcsecond localization

Table of contents

- 1. Introduction
 - Pulsars
 - Rotating Radio Transients (RRATs)
 - Fast Radio Bursts (FRBs)
- 2. Observing their putative afterglows: the case of FRB 150418
- 3. Direct imaging of single pulses
 - Pulsar B0525+21
 - RRAT J1819-1458
- 4. Conclusions

Introduction

Time-domain sources

Sources with emission on timescales shorter than seconds (extremely compact: $\sim 1\,000$ km):

- Pulsars
- Magnetars bursts
- Rotating radio transients (RRATs)
- Fast Radio Bursts (FRBs)

Neutron star compared with Tenerife

- A star of $\sim 10\text{--}30~\mathrm{M}_{\odot}$ explodes as a supernova.
- A neutron star was born.
- Magnetized neutron stars rapidly rotating: pulsar
- Light is emitted through the magnetic poles.
- Can rotate several times per second.

Crab pulsar: $\sim\!\!6\,000$ ly away; $\sim\!\!1\,000$ yr old; Period: 33 ms.

4

Crab pulsar: \sim 6 000 ly away; \sim 1 000 yr old; Period: 33 ms.

Comparison of pulsar-timing together with their accurate proper motions can provide the best mapping on Galactic rotation, cosmological frames, and gravitational waves.

Single dish radio observations: poor astrometry (~arcmin)

Astrometry of pulsars can be reach sub-milliarcsecond precision only with pulsar timing along several years.

Dispersion Measure (DM)

- The interstellar material disperses the light.
- Broadening of the pulses.
- $t \propto \nu^{-2}$
- $DM \equiv$ integrated column density of free electrons between the emitter and the observer.

$$DM = \int_{0}^{D} n_{e} dI$$

$$\propto \frac{t_{2} - t_{1}}{\nu_{2}^{-2} - \nu_{1}^{-2}}$$

Indirect measurement of the distance or the column density.

Rotating Radio Transients (RRATs)

- Pulsars where most of the pulses are missing.
 - \Rightarrow Easier detectable by single pulse searches.
- Interval between pulses: 4 min–3 hr.
- Periods of 0.4–7 s.
- The presence of a debris disk could originate the *missing* pulses.
- More difficult to localize with single dish observations
 Some of them only ~arcmin

Fast Radio Bursts (FRBs)

- Transient sources exhibiting a single bright burst: ~Jy in ~ms
- Discovered by Lorimer et al. (2007)
- \bullet \sim 20 discovered up to now
- The bursts resembles the ones observed in pulsars
- Not obvious associations
- Large DM ⇒ extragalactic
- Origin? extremely young pulsars, magnetars, AGNs?
 Galactic? Extragalactic?

Time-domain sources

Credit: J. P. Macquart

Unveiling the nature of FRBs

- We need a good localization of the FRBs to unveil their nature Much better than several arcmin.
- $\bullet \ \, \text{Not possible with single-dish telescopes} \\ \Rightarrow \text{interferometry!}$
- European VLBI Network (EVN): milliarcsecond resolution
- Two different approaches:
 - Image the single pulses (never done)
 - Detect the putative afterglow

FRB afterglows: FRB 150418

FRB 150418: The first announced association

FRB detected by Parkes on 18/04/2015 Pulse width of $0.8 \pm 0.3 \text{ ms}$ Linear polarization: $8.5 \pm 1.5\%$ Circular polarization: \sim zero. DM= $776.25 \text{ cm}^{-3} \text{ pc}$ ($\sim \times 4 \text{ Galactic contribution}$)

Follow-up with ATCA after 2-hr.

- Two variable compact sources detected. One previously known source.
- A 6-d transient with $\alpha \sim -1.37$ consistent with an early-type galaxy. Spurious transient in the field: <0.1%

The optical counterpart corresponds to a galaxy at $z \sim 0.5$: WISE J0716–1900

Keane et al. (2016, Nature)

FRB 150418: Publications after Keane et al. (2016)

FRB 150418: Publications after Keane et al. (2016)

6 publications in arXiv in less than 7 days (\sim 15 within 2 months).

- **Zhang (2016):** Afterglow $\Rightarrow \sim 10^{50}$ erg (like short duration GRB). Mergers of BH-BH, NS-NS, or BH-NS (similar to GW 150914).
- Williams & Berger (2016): WISE J0716–1900 exhibits a similar variability one year after the FRB in VLA data.

 Scintillating steady AGN!

 Probability of spurious transient not negligible.
- **Vedanthan et al. (2016):** ATCA and optical observations Source consistent with an AGN.

FRB 150418: Publications after Keane et al. (2016)

6 publications in arXiv in less than 7 days (\sim 15 within 2 months).

- **Zhang (2016):** Afterglow $\Rightarrow \sim 10^{50}$ erg (like short duration GRB). Mergers of BH-BH, NS-NS, or BH-NS (similar to GW 150914).
- Williams & Berger (2016): WISE J0716–1900 exhibits a similar variability one year after the FRB in VLA data.

 Scintillating steady AGN!

 Probability of spurious transient not negligible.
- **Vedanthan et al. (2016):** ATCA and optical observations Source consistent with an AGN.
- Bassa et al. (2016a,b): e-MERLIN, VLBA, ATCA, and optical. Persistent radio source in the center of the optical galaxy: consistent with a weak radio AGN.
- Marcote et al. (2016a,b); Giroletti et al. (2016): EVN obs. Keep listening!

EVN observations

We conducted four e-EVN observations from March to June 2016 on WISE J0716-19 at 5.0 GHz.

9 participating stations: Effelsberg, Jodrell Bank, Westerbork, Medicina, Noto, Onsala, Torun, Yebes, and Hartebeesthoek.

We also conducted simultaneous e-MERLIN observations at three epochs.

Epoch		EVN data				e-MERLIN data				
Date in		HPBW	$I_{\rm peak}$	I_{noise}	$S_{5.0, \text{JMFIT}}$	HPBW	I_{peak}	I_{noise}	$S_{5.0,\text{JMFIT}}$	$\Delta S_{5.0}$
2016	MJD	(mas × mas, °)	(μJy beam ^{−1})		(µJy)	(mas × mas, °)	(μJy beam ⁻¹)		(µJy)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
March 16	57463.8	$10.1 \times 6.2, 3.9$	123	18	125 ± 22					
May 10	57518.6	$9.7 \times 6.1, 8.7$	113	14	137 ± 20	$261 \times 25, 12$	169	55	176 ± 58	40 ± 60
May 31	57539.6	$10.9 \times 6.1, -7.5$	107	16	117 ± 20	$231 \times 27, 11$	145	48	158 ± 51	40 ± 55
June 2	57541.6	$9.3 \times 5.3, 1.3$	133	20	125 ± 32	$212 \times 28, 10$	254	52	272 ± 59	145 ± 70

EVN observations

EVN observations

Light-curve more than 1 yr after the FRB.

Discussion and conclusions

- \bullet The VLBI observations show a compact ${\sim}130\text{-}\mu\mathrm{Jy}$ source persistent on day-to-month timescales.
- \bullet Bolometric radio luminosity of 5.6 $\times\,10^{39}~{\rm erg~s^{-1}}.$
- Brightness temperature of $\gtrsim 10^{8.5}~{
 m K}.$
- But the VLA data indicate variability! on hour timescales?
- Missing VLA flux? no more compact sources in the field.
- The compact source seems to be compatible with a scintillating low-luminosity AGN.
- Origin of FRB 150418?

Giroletti, Marcote, Garrett et al. (2016, A&A, 593, L16)

The unambiguous approach to localize a FRB: **image its single pulse**.

Problems:

- ullet Requires to produce an image of only \sim ms with an interferometer.
- Really small sensitivity and (lack of) uv coverage.
- Strong artifacts (lobes) in the image.
- How to calibrate the data?
- Never done before with interferometers!

The unambiguous approach to localize a FRB: image its single pulse.

Problems:

- Requires to produce an image of only \sim ms with an interferometer.
- Really small sensitivity and (lack of) uv coverage.
- Strong artifacts (lobes) in the image.
- How to calibrate the data?
- Never done before with interferometers!
- Project started last year in the EVN
- Boosted this summer in collaboration with Yuping Huang (ASTRON/JIVE summer student)

Aard Keimpema, Yuping Huang, Benito Marcote, Zsolt Paragi

EVN single pulse imaging

We observed two different sources:

- A bright known pulsar: PSR B0525+21
- A RRAT: J1819-1458

The single pulse imaging requires two different parts:

- Pulsar-timing data (as regular in pulsar obs.)
 BUT: no pulsar backend.
- Standard continuum data with 1–2 s integration time.

De-disperse the data & apply continuum calibrations to data with $<\!$ ms integration time.

Challenges: no pulsar backend

Backend not Designed for Pulse Search

A chunk of our data showing signatures of the 80Hz calibration signal

Challenges: extrapolating calibration

- We calibrate the dataset with 1–2 s integration time as usual in EVN observations
- Phase-referencing observations: calibrator + target + calibrator...
- We extrapolate solutions during minutes.
- The solutions work in normal 1–2 s solutions.
- Does they work at ms timescales?

...in principle they should!

Challenges: uv-coverage

Interferometry is based on the signal combination of different antennas.

Challenges: uv-coverage

Interferometry is based on the signal combination of different antennas.

UV Coverage

PSR B0525+21: Ef, Jb2 ,Mc ,O8 ,Tr ,Wb 750 mJy pulse, 15 baselines

RRAT J1819-1458: Ef,Jb2 , Mc, Wb 7 Jy pulse, 6 baselines

Challenges: uv-coverage

Dirty image: the good & the bad

PSR B0525+21: Ef, Jb2 ,Mc ,O8 ,Tr ,Wb 750 mJy pulse, 15 baselines

RRAT J1819-1458: Ef,Jb2 , Mc, Wb 7 Jy pulse, 6 baselines

Wide-field Facet Imaging

Why?

- Sometimes we don't have good a priori position
- EVN as a non-coplanar array
- Easy parallelization for analysis

PSR B0525+21 10 arcsec radius 2-arcsec facets 0.5 mas resolution

Source Detection

 Combining all images is hard

instead we can

- Estimate noise from the entire map (parallelized)
- Plot peak SNR for each 2"x2"facet

PSR B0525+21 diagnostic 750mJy pulse 1-arcmin radius 2-arcsec facets

Delay Mapping

The residual delay from the phase center for each antenna with coordinate (u,v), to the first order, is given by

$$\tau = \frac{1}{c}(u\Delta\alpha + v\Delta\delta)$$

where $\Delta\alpha$, $\Delta\delta$ are right ascension and declination offsets from the phase center.

Hence for each antenna, we have linear constraint on $(\Delta\alpha,\,\Delta\delta).$

In our data, this method gives ~1 arcsec constraint on position

Schematic illustration of delay mapping in the $(\Delta\alpha,\,\Delta\delta)$ plane

Localizing single pulses: we did it!

- Pulsar PSR B0525+21.
- Images of single pulses.
- Position accuracy within the synthesized beam.
- Pulses with SNR > 6 within few mas.

Localizing single pulses: we did it!

- Pulsar PSR B0525+21.
- Images of single pulses.
- Position accuracy within the synthesized beam.
- Pulses with SNR > 6 within few mas.

406 pulses imaged 50 with SNR > 6.

Conclusions

The EVN can image single pulses of \sim mas reaching astrometric measurements of \sim arcsec (Huang et al. in prep.).

Completely new observing window with this instrument.

Interesting for several sources:

Pulsars: imaging of pulsars, e.g. inter-pulse emission.

RRATs: mas localization.

FRBs: imaging and localization (unambiguous localization).

In the coming years we will provide an accurate astrometry of poorly localized RRATs, and hopefully FRBs.

Position Measurements for RRAT J1819-1458

Need NW - SE Baselines

Phase instability

- Low elevation
- 3° separation from the calibrator
- Only 29° away from the sun
- · Calibrator in the galactic plane

Discarding points around bad calibration solutions improves consistency (red-blue markers)

 \rightarrow

Simply concatenating all pulses might lead to spurious position (phase slope) measurement

EVN imaging: steps to be done

Next step

Challenges: pulsar backend

Single Pulse Search with the EVN Backend

- Bandpass correction
- IF-dependent Zero-DM subtraction (modified from Eatough et al. 2009)
- De-disperse Trials & Match Filtering (Cordes & McLaughlin 2003)

Dynamic spectrum of a chunk of our data

Simulated dispersed & undispersed signals (Eatough et al., 2009)

Challenges: pulsar backend

Pulse detection example output from our data

RRAT J1819-1458, size of circle proportional to SNR