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Introduction



Time-domain sources

Sources with emission on timescales
shorter than seconds
(extremely compact: ~ 1000 km):

e Pulsars
e Magnetars bursts

e Rotating radio transients r
(RRATS)

e Fast Radio Bursts (FRBs)
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Neutron star compared with Tenerife



e A star of ~ 10-30 Mg explodes
as a supernova.

e A neutron star was born.

e Magnetized neutron stars
rapidly rotating:

e Light is emitted through the
magnetic poles.

e Can rotate several times per
second.
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Pulsars

Crab pulsar: ~6000 ly away; ~1000 yr old; Period
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Crab pulsar: ~6000 ly away; ~1000 yr old; Period: 33 ms.



Comparison of pulsar-timing together with their accurate proper motions
can provide the best mapping on Galactic rotation, cosmological frames,
and gravitational waves.

Single dish radio observations: poor astrometry (~arcmin)

Astrometry of pulsars can be reach sub-milliarcsecond precision only with
pulsar timing along several years.



Dispersion Measure (DM)

e The interstellar material disperses
the light.

e Broadening of the pulses.
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e DM = integrated column density
of free electrons between the emitter

and the observer.
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Rotating Radio Transients (RRATS)

e Pulsars where most of the pulses are
missing.
= Easier detectable by single pulse
searches.

e Interval between pulses: 4 min-3 hr.

e Periods of 0.4-7 s.

e The presence of a debris disk could

originate the missing pulses.

e More difficult to localize with single
dish observations
Some of them only ~arcmin



Fast Radio Bursts (FRBs)
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e Transient sources exhibiting a single o

bright burst: ~Jy in ~ms
e Discovered by Lorimer et al. (2007)
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e ~20 discovered up to now
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e The bursts resembles the ones
observed in pulsars
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e Origin? extremely young pulsars,
magnetars, AGNs?
Galactic? Extragalactic?



Time-domain sources
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Unveiling the nature of FRBs

e We need a good localization of the
FRBs to unveil their nature
Much better than several arcmin.

Not possible with single-dish telescopes
= interferometry!

European VLBI Network (EVN):
milliarcsecond resolution

Two different approaches:

e Image the single pulses (never done)
e Detect the putative afterglow
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FRB afterglows: FRB 150418




FRB 150418: The first announced association

FRB detected by Parkes on 18/04/2015
Pulse width of 0.8 = 0.3 ms

Linear polarization: 8.5 + 1.5%

Circular polarization: ~ zero.

DM= 776.25 cm 2 pc

(~ x4 Galactic contribution)

Follow-up with ATCA after 2-hr.

- Two variable compact sources detected.

One previously known source.

- A 6-d transient with ao ~ —1.37
consistent with an early-type galaxy.
Spurious transient in the field: < 0.1%

The optical counterpart corresponds to a
galaxy at z ~ 0.5: WISE J0716—1900

Right ascension (J2000)

7,000 8,000
Observed wavelength (A)

Keane et al. (2016, Nature)
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FRB 150418: Publications after Keane et al. (2016)

6 publications in arXiv in less than 7 days (~15 within 2 months).

Ti &
ingay Wang et al. Vedanthan
Kaplan et al.

Keane et al.
Wu et al. Li & Zhang

(Feb 24)

Bonetti Akiyama
etal. & Johnson

Bassa et
al. (ATel)

Bassa et al.
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FRB 150418: Publications after Keane et al. (2016)

6 publications in arXiv in less than 7 days (~15 within 2 months).

Zhang (2016): Afterglow = ~ 10°° erg (like short duration GRB).
Mergers of BH-BH, NS-NS, or BH-NS (similar to GW 150914).

Williams & Berger (2016): WISE J0716—1900 exhibits a similar variability
one year after the FRB in VLA data.
Scintillating steady AGN!
Probability of spurious transient not negligible.

Vedanthan et al. (2016): ATCA and optical observations
Source consistent with an AGN.
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FRB 150418: Publications after Keane et al. (2016)

6 publications in arXiv in less than 7 days (~15 within 2 months).

Zhang (2016): Afterglow = ~ 10°° erg (like short duration GRB).
Mergers of BH-BH, NS-NS, or BH-NS (similar to GW 150914).

Williams & Berger (2016): WISE J0716—1900 exhibits a similar variability
one year after the FRB in VLA data.
Scintillating steady AGN!
Probability of spurious transient not negligible.

Vedanthan et al. (2016): ATCA and optical observations
Source consistent with an AGN.

Bassa et al. (2016a,b): e-MERLIN, VLBA, ATCA, and optical. Persistent
radio source in the center of the optical galaxy: consistent with
a weak radio AGN.

Marcote et al. (2016a,b);Giroletti et al. (2016): EVN obs. Keep listening!
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EVN observations

We conducted four e-EVN observations from March to June 2016 on
WISE J0716—19 at 5.0 GHz.

9 participating stations: Effelsberg, Jodrell Bank, Westerbork, Medicina,
Noto, Onsala, Torun, Yebes, and Hartebeesthoek.

We also conducted simultaneous e-MERLIN observations at three epochs.

Epoch EVN data e-MERLIN data
Date in HPBW Tpeak  Tnoise  Ss.0IMEIT HPBW Dpeak  Tnoise  Ss.0ImEIT ASso
2016 MID (mas X mas, °)  (iy beam™) (Wy) (mas X mas, °)  (uJy beam™) (uly)
@ 2 3) “4) ) (6) (@) ®) © 10 an
March 16  57463.8  10.1x6.2,39 123 18 125+22
May 10 57518.6  9.7x6.1,8.7 113 14 137+£20 261 x25,12 169 55 176 £58 40+ 60
May 31 57539.6 10.9x6.1,-7.5 107 16 117 +20

231 x27,11 145 48 158 +51  40+55

June 2 57541.6 9.3x53,1.3 133 20 125+32 212x28,10 254 52 272+59 145+70
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EVN observations

Peak brightness

-1900 39.40

(1Jy beam™1):

Iarig = 123+18 39.45
hayio = 113 £14 §
= 39.50
IMay31 = 10716 £
2 = 133220 &

39.55

39.60

39.65
07 16 34.564 34.560 34.556 34.552 34.548
Right Ascension (J2000)
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EVN observations

Light-curve more than 1 yr after the FRB.
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Discussion and conclusions

e The VLBI observations show a compact ~130-pJy source persistent
on day-to-month timescales.

e Bolometric radio luminosity of 5.6 x 103 erg s—*.
e Brightness temperature of > 10%° K.
e But the VLA data indicate variability! on hour timescales?

e Missing VLA flux? no more compact sources in the field.

e The compact source seems to be compatible with a scintillating
low-luminosity AGN.

e Origin of FRB 1504187

Giroletti, Marcote, Garrett et al. (2016, A&A, 593, L16)
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Direct single pulse imaging




Direct single pulse imaging

The unambiguous approach to localize a FRB: image its single pulse.

Problems:

e Requires to produce an image of only ~ms with an interferometer.

e Really small sensitivity and (lack of) uv coverage.

Strong artifacts (lobes) in the image.

How to calibrate the data?

Never done before with interferometers!
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Direct single pulse imaging

The unambiguous approach to localize a FRB: image its single pulse.

Problems:

e Requires to produce an image of only ~ms with an interferometer.
e Really small sensitivity and (lack of) uv coverage.

e Strong artifacts (lobes) in the image.

e How to calibrate the data?

e Never done before with interferometers!

e Project started last year in the EVN

e Boosted this summer in collaboration with Yuping Huang
(ASTRON/JIVE summer student)
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Direct single pulse imaging
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EVN single pulse imaging

We observed two different sources:

e A bright known pulsar: PSR B0525+21
e A RRAT: J1819—1458

The single pulse imaging requires two different parts:

e Pulsar-timing data (as regular in pulsar obs.)
BUT: no pulsar backend.

e Standard continuum data with 1-2 s integration time.

De-disperse the data & apply continuum calibrations to data with <ms
integration time.
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Challenges: no pulsar backend

Backend not Designed for Pulse Search

-
~
o

1680 E

Observing frequency (MHz)
&
<)
o

S e r
0.03 0.04 0.05 0.07
Time +1.484el

A chunk of our data showing signatures of the 80Hz calibration signal
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Challenges: extrapolating calibration

We calibrate the dataset with 1-2 s integration time as usual in
EVN observations

e Phase-referencing observations: calibrator 4 target + calibrator. ..

We extrapolate solutions during minutes.

The solutions work in normal 1-2 s solutions.

Does they work at ms timescales?

...in principle they should!

22



Challenges: uv-coverage

Interferometry is based on the signal combination of different antennas.

2D Fourier Transforms PSF shape vs. N ants

Amp{V()} 2 antennas

Toon

1

Ineed ile he uv pane

PSF shape vs. N ants PSF shape vs. N ants
3 antennas 8 antennas x 240 samples

by increasing the number of antennas

23



Challenges: uv-coverage

Interferometry is based on the signal combination of different antennas.

UV Coverage

PSR B0525+21: Ef, Jb2 ,Mc ,08 ,Tr Wb RRAT J1819-1458: Ef,Jb2 , Mc, Wb
750 mJy pulse, 15 baselines 7 Jy pulse, 6 baselines 24



Challenges: uv-coverage

Dirty image: the good & the bad

PSR B0525+21: Ef, Jb2 ,Mc ,08 ,Tr Wb RRAT J1819-1458: Ef,Jb2 , Mc, Wb
750 mJy pulse, 15 baselines 7 Jy pulse, 6 baselines
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Challenges: localization

Wide-field Facet Imaging

Why?

Sometimes we don’t have good
a priori position

EVN as a non-coplanar array
Easy parallelization for analysis

PSR B0525+21

10 arcsec radius
2-arcsec facets
0.5 mas resolution 26



Challenges: localization

Source Detection

e Combining all images is

hard o
instead we can ,
e Estimate noise from the % ] E
entire map (parallelized) E ’
e Plot peak SNR for each . 1
2"x2"facet :

0000

20000

~20000 g
W-E offset (mas)

PSR B0525+21 diagnostic

750mJy pulse

1-arcmin radius

2-arcsec facets 27



Challenges: localization

Delay Mapping

The residual delay from the phase center y
for each antenna with coordinate (u,v), to v
the first order, is given by

T = 1(uAOz + vAS) : 1

C

As

N
\
A

where Aa, Aé are right ascension and y y
declination offsets from the phase / y

center. /

Hence for each antenna, we have linear y
constraint on (Aa, Ad).

: : - Schematic illustration of delay mapping in
In our d.ata, this m_ethod gives ~1 arcsec the (Aa, A8) plane
constraint on position
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Localizing single pulses: we did it!

e Pulsar PSR B0525-+21.
e Images of single pulses. s
e Position accuracy within the g
synthesized beam. : s
e Pulses with SNR > 6 within
few mas. R

/4
52.235° 52.230° 5h28M52.225¢
@ (J2000)
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Localizing single pulses: we did it!

Pulsar PSR B0525+21.

Images of single pulses.

Position accuracy within the

synthesized beam.

e Pulses with SNR > 6 within = 5 £ 0730 40 60

Aa (mas)

few mas.
406 pulses imaged

50 with SNR > 6.
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Conclusions

The EVN can image single pulses of ~mas reaching astrometric
measurements of ~arcsec (Huang et al. in prep.).

Completely new observing window with this instrument.

Interesting for several sources:

Pulsars: imaging of pulsars, e.g. inter-pulse emission.
RRATS: mas localization.

FRBs: imaging and localization (unambiguous localization).

In the coming years we will provide an accurate astrometry of poorly
localized RRATSs, and hopefully FRBs.
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Thank you



Challenges: localization

Position Measurements for RRAT J1819-1458

Need NW - SE Baselines
Phase instability

Low elevation

3° separation from the calibrator
Only 29° away from the sun
Calibrator in the galactic plane

phase

Discarding points around bad
calibration solutions improves
consistency (red-blue markers)

Simply concatenating all pulses /'/
‘ might lead to spurious position
(phase slope) measurement uv distance




EVN imaging: steps to be done

Next step

Voltage
When did it happen? Deta

Single Dish Total "Continuum" Mode
Power Data Correlated
(Effelsberg) Visibilities

I
Single Pulse Calibration,

Flagging, etc.

(AIPS/ParselTongue)

Re-correlate,

Pulsar Gating/Binning,
Apply Calibration l

Wide-field Facet | Imaging/Fit to

Visibilities

Where is it in the Where is it exactly?
primary beam?



Challenges: pulsar backend

Single Pulse Search with the EVN Backend

e Bandpass correction ¥ 1350
o |F-dependent Zero-DM subtraction £ s
(modified from Eatough et al.
2009) £ 0 £
e De-disperse Trials & Match Filtering gxm
(Cordes & McLaughlin 2003) £

o

)

BgEaas

© AgrmwErEe
=
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pulse SNR
8

0 02 04 06 08 1
time (s)

Simulated dispersed & undispersed signals
(Eatough et al., 2009)

Dynamic spectrum of a chunk of our data



Challenges: pulsar backend

Pulse detection example output from our data

300

DM (pc cm™)
200
—

00

. .
0 50 100 150 200
Time (s)

RRAT J1819-1458, size of circle proportional to SNR
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