An Overview of the Modern Radio Universe

Benito Marcote

Departament d'Astronomía i Meteorología Universitat de Barcelona

May 3, 2013

- Astrometry: up to 7 μ as nowadays.
- High-resolution imaging
- Map of the gas in the Galaxy (HI)
- High-energy processes: link to X/gamma-ray emission
- Non-thermal processes

Radio astronomy started in the '30s Observes from 10 MHz to 1 THz In \approx 80 years: resolution from \sim 10 deg to $\sim \mu$ as. while in optical: from \sim arcmin to \sim 10 mas (Gaia: $\sim 10\mu$ as)

Karl G. Jansky 1932

Effelsberg in Germany d = 100 m

An Overview of the Modern Radio Universe

Green Bank (GBT) in West Virginia (U.S.A.) d = 100 m

Green Bank (GBT) in West Virginia (U.S.A.) d = 100 m

Green Bank (GBT) in West Virginia (U.S.A.) d = 100 m

Arecibo in Puerto Rico d = 300 m

Benito Marcote (UB)

HASLAM 408 MHz

Interferometric Arrays

One of the most important step forward in radio observatories: *interferometry*

- Combining the coherent signal from many antennas
- Resolution \sim largest distance between antennas
- Many "medium" antennas instead of one big antenna

Benito Marcote (UB)

Cyg-A:

An Overview of the Modern Radio Universe

"hotspot"

Collimated jet

Radio core - identified with optical galaxy.

lobe

Benito Marcote (UB)

An Overview of the Modern Radio Universe

VLA in Socorro (U.S.A.) 27 antennas of 25 m each one up to 36 km

Benito Marcote (UB)

An Overview of the Modern Radio Universe

15

VLA

HD 215227 field. 1-hour observation at 2.3 GHz

Benito Marcote (UB)

T in India 30 antennas of 45 m each one up to 🎊

GMRT

LS 5039 field. 5-hour observation at 150 MHz

The Global VLBI - Array

VLBI

LS 5039 (Moldón 2012)

VLBI

Benito Marcote (UB)

and more beautiful names!

Observing at low frequencies (below 1 GHz)

- Most sources have a higher luminosity
- Only non-thermal processes
- Ionospheric problems...
- Much lower cost per antenna

There is also more problems: (LWA spectrum)

LOFAR The Low Frequency Array

Benito Marcote (UB)

An Overview of the Modern Radio Universe

Observes in the 10-250 MHz range

- LBA: 10-80 MHz
- HBA: 110-250 MHz

Core in The Netherlands

Also Germany, U.K., France, Sweden \sim 45 stations (48 HBA & 96 LBA) Baselines up to 1 500 km (\lesssim arcsec) Pointing purely by software

First large-scale interferometer at low frequencies

LOFAR: High Band Antennas

An Overview of the Modern Radio Universe

LOFAR: Low Band Antennas

Benito Marcote (UB)

An Overview of the Modern Radio Universe

6 of 36.

There are a lot of science to which LOFAR can contribute...

- Transients
- Pulsars
- Planets, exoplanets
- Sun (Space Weather)
- Cosmic Rays
- Epoch-of-Reionization

- Cosmic magnetism
- Galactic structure and ISM
- Wide imaging surveys
- Clusters and halos
- AGNs and radio galaxies
- And more...

LOFAR can observe the almost all sky at the same time Many pointings simultaneously The only restriction is...the *disk space!* ($\sim 1 \text{ TB/hr}$)

Quasar B1834+620 at 150 MHz (Orru's talk at LOFAR Dalfsen II)

An Overview of the Modern Radio Universe

Solar radio bursts (Ireland station)

An Overview of the Modern Radio Universe

Cosmic Rays

MAGIC (Major Atmospheric Gamma-ray Imaging Cherenkov Telescopes)

Cosmic Rays

With LOFAR you can also detect air showers...

Nelles et al. 2013

Using LOFAR for Gamma-Ray Binaries

- LOFAR is the first radio observatory at low frequencies with enough resolution and sensitivity
- At these frequencies we should detect the emission present at larger scales away from the system
- We have two LOFAR observations during commissioning stage: LS 5039 & LS I +61 303

Using LOFAR for Gamma-Ray Binaries

The Old Ones

Benito Marcote (UB)

An Overview of the Modern Radio Universe

36 of 36

The New ones