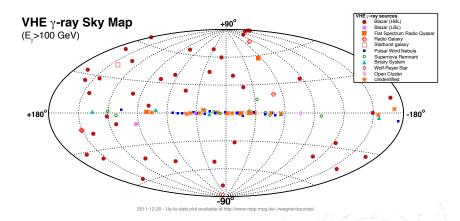
The Very Low Frequency Emission for Gamma-Ray Binaries

Benito Marcote



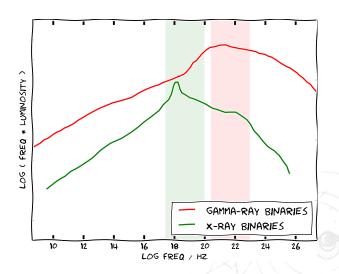
B Universitat de Barcelona

In collaboration with M. Ribó, J. M. Paredes, C. H. Ishwara-Chandra (GMRT) J. Swinbank, J. Broderick & S. Markoff (LOFAR)

October 17, 2013

The Gamma-Ray Sky

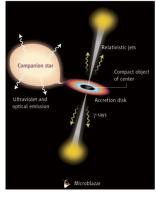
- ullet Very High Energy ($>100~{
 m GeV})$ sky seen by Cherenkov telescopes
- Only a few TeV source have been associated with binary systems

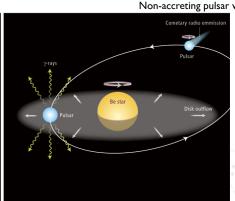

 $(^{2}/_{17}$

Only a few binary systems exhibiting gamma-ray emission have been detected up to now:

System	Primary star	Compact object	P/ days
Cygnus X-3	WR	ВН	0.2
Cygnus X-I ??	09.7Ve	BH	5.6
HD 215227 ??	Be	BH	60.4
PSR B1259-63	09.5Ve	pulsar!	1236.7
HESS J0632+057	B0 Vpe	?	315.0
LS I +61 303	B0 Ve	?	26.5
IFGL J1018.6-5856	O6V	?	16.6
LS 5039	06.5V	? / ? /	3.9

The black ones are X-ray binaries exhibiting gamma-ray emission. The green ones are the only known gamma-ray binaries

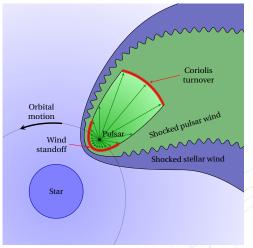

X-ray binaries VS gamma-ray binaries spectrum



Different scenarios seem to be required to describe the two kind of sources

Microquasar

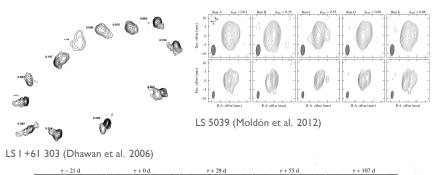
Non-accreting pulsar wind

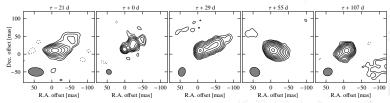


Mirabel (2006)

PSR B1259-63

Cygnus X-1, Cygnus X-3


Young non-accreting pulsar wind scenario



Model for LS 5039 from Zabalza et al. (2012)

Radio observations

Published long baseline observations

PSR B1259-63 (Moldón et al. 2012)

Radio observations

With long baseline interferometers:

- Periodic morphological changes are reported in several gamma-ray binaries
- The Position Angle rotates along the orbit
- Generally one-sided extended emission, but at specific orbital phases two-sided

At very low frequencies ($\ll 1$ GHz) we expect...

- Absorption mechanisms arising from the spectrum
- A large extended structure ("nebula" or "halo")
- A more steady emission along the time
- Almost unexplored up to now!

⁸/17

Radio observations

With long baseline interferometers:

- Periodic morphological changes are reported in several gamma-ray binaries
- The Position Angle rotates along the orbit
- Generally one-sided extended emission, but at specific orbital phases two-sided

At very low frequencies ($\ll 1$ GHz) we expect...

- Absorption mechanisms arising from the spectrum
- A large extended structure ("nebula" or "halo")
- A more steady emission along the time
- Almost unexplored up to now!

Objectives

Low frequency radio emission

- Determine the spectrum of the gamma-ray binaries
- Search for variability
- Search for absorption mechanisms
- Infer the geometry of the system and emission models

Extended emission

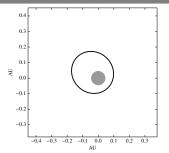
- Detect for first time the predicted extended emission around the binary system at low frequencies (~arcsec-arcmin)
- Determine the geometry of the system at larger timescales and farther away distances

Current research

LS 5039

O6.5 V star (23 \pm 3 M_{\odot})

 $P \approx 3.9 \text{ d}$


 $d = 2.5 \pm 0.5 \; \mathrm{kpc}$

 $e = 0.35 \pm 0.04$

Gamma-rays: single outburst

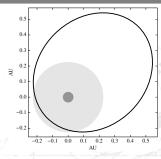
Radio: not periodic, small variability

Casares et al. (2005)

LSI+61 303

B0 Ve star $(12.5\pm2.5~{\rm M}_{\odot})$

 $P \approx 26.5 \text{ d}$

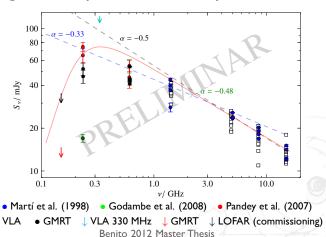

 $d=1.9\pm0.1~{
m kpc}$

 $e = 0.54 \pm 0.01$

Gamma-rays: doble outburst

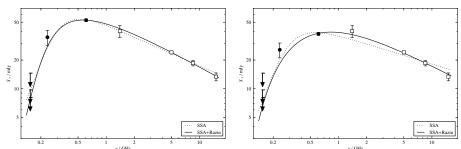
Radio: double outburst

Aragona et al. (2009)



LS 5039

At \sim GHz frequencies, LS 5039 exhibits (Martí et al. 1998):


- Synchrotron emission (power-law with $lpha = -0.46 \pm 0.01$)
- Emission persistent with a variability $\lesssim 30\%$

Analyzing archival (not simultaneous) VLA & GMRT:

LS 5039

We conducted simultaneous observations with GMRT and WSRT from July 18 to 22, 2013: 150, 235/610 MHz, 1.4, 2.3, 5.0 GHz

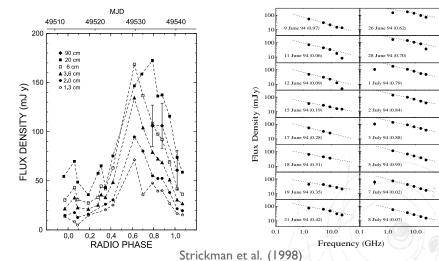
Data from WSRT with problems (Mean values from Martí et al. 1998 showed here)

- The WSRT are necessary to completely described the spectrum
- Synchrotron Self-Absorption can explain the left spectrum
- Free-Free Absorption does not change appreciably the spectra
- Razin effect seems to be needed for the right spectrum

LS 5039

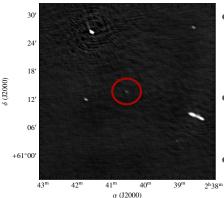
Results

From the previous spectra we infer:


- $B \sim 2 \cdot 10^{-5} \, \mathrm{T} \quad (\sim 1 \cdot 10^{-6} \, \mathrm{T})$ $B \sim 2 \cdot 10^{-4} \, \mathrm{T} \quad (\sim 8 \cdot 10^{-7} \, \mathrm{T})$
- $R \sim 8 \cdot 10^{11} \text{ m}$ $R \sim 2 \cdot 10^{12} \text{ m}$

Razin effect

- The emission from relativistic charges surrounded by a cool, collisionless plasma is exponentially suppressed at low frequencies.
- Widely reported in Colliding Wind Binaries, but not in microquasars


LS I +61 303

Contrary to LS 5039, this system shows a large variability in radio

LS I +61 303

- \sim 30 unpublished archival GMRT observations at 235/610 MHz in 2005–2006 and one observation at 150 MHz in 2008
- We performed with the TKP 6 LOFAR observations in Cycle 0 at \sim 150 MHz

- GMRT detection at 150 MHz $S_{\nu}>30$ mJy $\phi=0.5$ (point-like source)
- LOFAR not detected anything rms \sim 6–10 mJy $\phi = 0.4, \ 0.0$
- On-going work to determine the spectrum with the 235/610 MHz archival GMRT data

Conclusions

For LS 5039...

- We have reported a turnover in the spectrum at frequencies below I GHz
- The shape of the spectrum changes with the time
- A strong suppression appears at very low frequencies
 No detections at 150 MHz up to now
- Similarities with CWBs could support the pulsar scenario

For LS I +61 303...

- Still on-going work
- A full covering of an orbit is required to compare the emission with the observed at GHz frequencies
 The peak of the emission is reached at the same time, or after?
- Extended emission could remain during the weak point-like emission

